
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



          Contents 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                                                                                                                                    Contents 3

 
 
 

Developments in 
numerical simulations of 

the real-life deep drawing process 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Timo Meinders 
 
 
 
 
 
This research project was sponsored by the Dutch Ministry of Economic Affairs, project 
number IOP-C.94.707.UT.WB, ‘Hierarchisch dieptrekmodel’ (Hierarchical deep drawing 
model). The sponsoring is gratefully acknowledged. 



          Contents 4 

 
 
 
 
 
 
 
 
 
 
De promotiecommissie: 
 
Voorzitter en secretaris: 
Prof.dr.ir. H.J. Grootenboer    Universiteit Twente 
 
Promotor: 
Prof.dr.ir. J. Huétink    Universiteit Twente 
 
Leden: 
Prof. J.-L. Batoz    Université de Technologie de Compiègne 
Dr.ir. W.A.M. Brekelmans   Technische Universiteit Eindhoven 
Prof.ir. A.W.J. de Gee    Universiteit Twente 
Prof.dr.ir. J. Meijer     Universiteit Twente 
Prof.dr. C.R. Traas     Universiteit Twente 
Dr.Ir. H. Vegter     Corus Group PLC. 
 
 
 
 
 
 
 
 
 
 
Title: Developments in numerical simulations of the real-life deep drawing process 
Subject headings: Finite element method 
      Mixed elastoplastic / rigid plastic material model 
      Equivalent drawbead model 
      Adaptive remeshing 
 
 
 
ISBN 90-36514002 
Copyright © 2000 by V.T. Meinders, Hengelo, The Netherlands 
Printed by Ponsen & Looijen, Wageningen  
 
 
 



                                                                                                                                    Contents 5

DEVELOPMENTS IN 
NUMERICAL SIMULATIONS OF 

THE REAL-LIFE DEEP DRAWING PROCESS 
 
 
 
 
 

PROEFSCHRIFT 
 
 
 
 
 
 
 
 
 

ter verkrijging van 
de graad van doctor aan de Universiteit Twente, 

op gezag van de rector magnificus, 
prof.dr. F.A. van Vught, 

volgens besluit van het College voor Promoties 
in het openbaar te verdedigen 

op vrijdag 11 februari 2000 te 15.00 uur. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

door 
 

Vincent Timo Meinders 
 

geboren op 10 mei 1973 
te Hengelo 

 
 
 
 



          Contents 6 

Dit proefschrift is goedgekeurd door de promotor: 
 
Prof.dr.ir. J. Huétink 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                                                                                                                                    Contents 7

 
 
 
 
 
 
 
 

If you’re in a valley, with a troubled mind 
I’m a mountain, come on and climb 

Because you look so good, to be so down 
It won’t take much girl, to turn it all around 

 
Come with me, come with me 

The feeling’s free, just come with me 
Will get on a cloud babe, and ride it high 

Say hello sun, as we sail by 
 

I’ll take you where, you’ve never been before 
Once we’re there, you’ll cry for more 

If it’s dark in your world, come walk in mine 
My love’s a light babe, it’s on all the time 

 
Come with me, come with me 

The feeling’s free, just come with me 
Will get on a cloud girl, and ride it high 

Say hello sun, as we sail by 
 

Come with me, come with me 
The feeling’s free, just come with me 

Will get on a cloud babe, and ride it high 
Say hello sun, as we sail by 

 
 
 

‘Come with me’ by Waylon Jennings 
from cd: Waylon Jennings - Greatest Hits 

written by C. Howard 
copyright© owned by Music of C&P; 

 in Benelux: 2P’sW Music, Hilversum, the Netherlands 
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Summary 
 
 
 

The deep drawing process is used to manufacture sheet metal products with sometimes 
complicated shapes and curvatures. The process starts with the clamping of the outer edge of 
a blank between the blankholder and the die. The blankholder is loaded by a force to prevent 
wrinkling and to control the material flow into the die cavity. Then the punch moves 
downwards, simultaneously transferring the specific shape of the tools to the blank. The final 
product shape after deep drawing is defined by the tools, the blank and the process 
parameters. Without extensive knowledge of the influences of all these variables on the deep 
drawing process, it is hardly possible to design the tools adequately and make a proper choice 
of blank material, lubricant, blankholder force etc. to manufacture a product with the desired 
shape and performance. A prime tool to study the influence of these variables on the forming 
process is the finite element method. For an accurate simulation of a real-life deep drawing 
process an accurate numerical description of the tools, material behavior, contact behavior 
and other process variables is necessary. Currently, the accuracy and reliability of numerical 
simulations of the deep drawing process do not yet satisfy the industrial requirements. The 
limitations of numerical simulations are still the long computational time required for 
complex deep drawing parts and the lack of detailed knowledge of material physics such as 
material behavior and contact behavior. The objective of this work is to decrease the 
computational time of a finite element simulation while maintaining the robustness and 
accuracy. This thesis presents the development of a mixed elastoplastic / rigid plastic material 
model, an equivalent drawbead model and an adaptive remeshing procedure for sheet metal 
forming. 

 
Two widely used numerical material models in sheet metal forming are the elastoplastic 

material model and the rigid plastic material model. The advantage of the elastoplastic model 
is that it gives an accurate description of the material behavior. A disadvantage of the 
elastoplastic material model is that it can give rise to numerical instabilities due to the 
transition from elastic to plastic behavior. The advantage of the rigid plastic description is that 
it is a fast and robust algorithm. On the other hand, disadvantages of this material model are 
that elastic phenomena such as springback cannot be described and that the model becomes 
inaccurate in dead metal zones. A mixed elastoplastic / rigid plastic material model is 
developed here to benefit from the advantages of both the elastoplastic and rigid plastic 
material model, i.e. accuracy and fast convergence over a large range of plastic strain 
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increments. The mixed material model consists of two parts. For small strain increments, the 
mixed material model degenerates to the Euler forward elastoplastic material model. For large 
strain increments, the mixed material model degenerates to the rigid plastic material model. 
The performance of the mixed material model is investigated for academic and a realistic 
problem. The mixed material model shows a good performance in case of the academic 
problems but did not perform well in the case of the realistic problem. 

 
The quality of a sheet metal stamping part is secured by the material flow into the die 

cavity. A local control mechanism is provided by drawbeads, which are small protrusions in 
the blankholder-die region. A drawbead consists of two components, the bead itself and a 
matching groove. The drawbead creates a restraining force by cyclically bending and 
unbending the sheet as it traverses the drawbead, causing strain changes in the blank. An 
equivalent drawbead model is developed which replaces the real drawbead geometry in a 
deep drawing simulation by a line on the tool surface and incorporates the main drawbead 
characteristics. The input for the equivalent drawbead model is provided by experiments or by 
a 2D plane strain drawbead model in which the real drawbead geometry is accurately 
modeled. Experiments are performed to validate the equivalent drawbead model. The good 
agreement between the experimental data and the simulation results shows that the equivalent 
drawbead model is a powerful tool to replace the real drawbead in deep drawing simulations, 
without significant loss of accuracy. 

 
The numerical simulation of real-life deep drawing processes is potentially very expensive. 

Hence, it is desired to minimize the computational cost while obtaining the desired accuracy. 
This objective can be achieved by adaptive remeshing. Adaptive remeshing has two major 
advantages. First, the computational cost can be reduced and second, a highly distorted mesh 
can be avoided. The adaptive remeshing procedure can be divided into three phases. First, a 
remeshing criterion is defined based on an error indicator. Next, a new mesh has to be 
generated which must satisfy specific requirements. Finally, a procedure for the transfer of 
state variables and boundary conditions from the old mesh to the new mesh is required. In this 
thesis, two error indicators are presented, i.e. an error indicator based on a thickness error and 
an error indicator based on a geometrical error. A refinement strategy based on h-adaptivity is 
developed for 3-node triangular plate elements. Two data transfer procedures are 
implemented to map the state variables and boundary conditions onto the new mesh. The 
performance of the adaptive remeshing procedure is demonstrated on the basis of several deep 
drawing simulations. The adaptive remeshing procedure can successfully be applied to 
simulations of the real-life deep drawing process, decreasing the necessary computational 
time for an accurate simulation significantly. Finally, a preliminary study is carried out for the 
coupling of a wrinkling prediction model to the adaptive remeshing procedure. The results of 
this study show that this coupling can be very powerful to accurately describe wrinkling 
behavior while an excessive increase in computational cost is avoided. 
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1.  Introduction 
 
 
 
1.1 Sheet metal forming 
 

In metal forming, a piece of material is plastically deformed between tools to obtain the 
desired product. A special class of metal forming concerns the case where the thickness of the 
piece of material is small compared to the other dimensions, i.e. sheet metal forming. Sheet 
metal forming is a widely used production process: in 1998, 265 million tons of steel sheet 
and 9 million tons of aluminum sheet was produced worldwide which was approximately 
35% of the total steel and aluminum production [Langerak, 1999a]. Sheet metal forming is 
characterized by a stress state in which the component normal to the sheet plane is generally 
much smaller than the stresses in the sheet plane. A commonly used sheet metal forming 
process is the deep drawing process. The principle of deep drawing is schematically 
represented in Figure 1-1. 

 
Figure 1-1. Schematic of the deep drawing process 

An initially flat or pre-shaped sheet material, the blank, is clamped between the die and the 
blankholder. The blankholder is loaded by a blankholder force, which is necessary to prevent 
wrinkling and to control the material flow into the die cavity. Then the punch is pushed into 
the die cavity, simultaneously transferring the specific shape of the punch and the die to the 
blank. During the forming stage the material is drawn out of the blankholder-die region, 
whereas the material is subjected to compressive and tensile stresses during forming. When a 
very high blankholder force is applied, the deep drawing process becomes a stretching 
process. In stretch forming the material is fixed under the blankholder, leading to thickness 
reduction in the remaining part of the blank in which the stresses are tensile in almost all 
directions. Stretch forming is used mainly to produce large shallow parts that must be 
subjected to sufficient straining to improve the flex resistance. 

As mentioned, the material flow into the die cavity is controlled by the blankholder, a 
restraining force is created by friction between the tools and the blank. The friction between 
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the tools and the blank is influenced by the blankholder force, lubrication or by coatings on 
the blank or tools [Haar, 1996], [Carleer, 1997]. However, during the forming stage the blank 
does not make contact with the entire blankholder. This implies that the material flow can 
only globally be controlled by the blankholder. A local control mechanism is provided by 
drawbeads, which are small protrusions in the blankholder-die region. The material is forced 
to traverse the drawbead when the punch moves into the die cavity, causing a local restraining 
of the material flow.               

The deep drawing process is frequently used in the automotive industry (outer panels, 
inner panels, stiffeners etc.), the packaging industry (petfood containers, beverage cans etc.) 
and the household appliances industry (housings etc.) to manufacture products with more 
complicated shapes and curvatures. Nowadays, the automotive industry tends to favor light 
construction principles, leading to the usage of light materials (aluminum and sandwich 
laminates), tailored blanks and the usage of new production processes such as hydroforming 
[Langerak, 1999b]. 

A tailored blank consists of several flat sheets that are welded together before forming. A 
combination of different materials, thickness, and coatings can be welded together to form a 
blank for stamping car body panels. The main advantage of using tailored blanks is to have 
specific characteristics at particular parts of the blank in order to reduce weight and costs. 
Other advantages of using tailored blanks are improvement of shape accuracy, crash 
durability and reduction in press handling [Meinders, 1999]. There are also disadvantages, 
however. The welding of the flat sheets is an extra step in the production process with added 
cost. Moreover, the weld and the Heat Affected Zone can negatively influence the formability 
of the blank due to the development of martensitic structures [Saunders, 1996].   
 In the hydroforming process parts are formed using a rigid die and a fluid under high 
hydrostatic pressure. It is used for the forming of tubular parts and flat sheets. In tube forming 
a pressure is applied in the interior of the tube and often a mechanical compressive force is 
exerted in the axial direction. The combination of compressive axial stresses and 
circumferential tensile stresses facilitates the deformation up to high strains because necking 
is postponed by the axial compression [Huétink, 1999].  As a result, the hydroforming process 
offers the ability to manufacture products with very complex shapes which entails a high 
styling potential for product designers.  
 
1.2 Numerical simulation 
 

The deep drawing process is applied with the intention of manufacturing a product with a 
desired shape and no failures. The final product shape after deep drawing is defined by the 
tools, the blank and the process parameters. An incorrect design of the tools and blank shape 
or an incorrect choice of material and process parameters can yield a product with a deviating 
shape or with failures. A deviating shape is caused by elastic springback after forming and 
retracting the tools. The most frequent types of failure are wrinkling, necking (and 
subsequently tearing), scratching and orange peel. Wrinkling may occur in areas with high 
compressive strains, necking may occur in areas with high tensile strains, scratching is caused 
by defects of the tool surface and orange peel may occur after excessive deformations, 
depending on the grain size of the material. The deformation patterns of the sheet material are 
influenced by the material properties and the friction conditions. Generally, sheet material 
behaves anisotropically which means that the material shows a different deformation behavior 
in different directions because of the rolling process. An example of anisotropy is the 
development of ‘ears’ in cylindrical cup drawing. The friction conditions during forming 
depend on the lubricant, the presence of coatings on the blank, surface roughness of the tools 
and the blank, blankholder pressure and process velocity.            
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 Without extensive knowledge of the influences of all these variables on the deep drawing 
process, it is hardly possible to design the tools adequately and make a proper choice of blank 
material and lubricant to manufacture a product with the desired shape and performance. As a 
result, after the first design of the tools and choice of blank material and lubricant, an 
extensive and time consuming trial and error process is started to determine the proper tool 
design and all other variables, leading to the desired product. This trial and error process can 
yield an unnecessary number of deep drawing strokes, or may even require redesigning the 
expensive tools. To reduce this waste of time and cost, process modeling for computer 
simulation can be used to replace the experimental trial and error process by a virtual trial and 
error process. 

The prime objective of an analysis is to assist in the design of a product. To design or 
select the tools and the equipment, such design essentially consists of: 

 
• predicting the material flow; 
• determining whether it is possible to form the part without surface or internal defects; 
• predicting the forces and stresses necessary to execute the forming operation.  

 
In the past a number of analyzing methods have been developed and applied to various 
forming processes. Some of these methods are the slab method, the slip-line field method, the 
viscoplasticity method, upper and lower bound techniques and Hill’s general method. These 
methods have been useful in qualitatively predicting forming loads, overall geometry changes 
of the deformed blank and material flow and in determining approximate optimum process 
conditions. However, a more accurate determination of the effects of various process 
parameters on the deep drawing process has became possible only recently, when the finite 
element method was developed for these analyses [Kobayashi, 1989]. 

Rapid developments in computer hardware make the finite element analysis of complex 
deformation responses increasingly applicable. The finite element method is used worldwide 
to simulate the deep drawing process and has become a reliable numerical simulation 
technology. For an accurate simulation of a real-life deep drawing process an accurate 
numerical description of the tools is necessary, as well as an accurate description of material 
behavior, contact behavior and other process variables. The numerical description of the tools 
is provided by CAD packages which are generally used by tool designers. The description of 
material behavior, contact behavior and other process variables evolved from rather simple 
models in the earlier days to more and more sophisticated models nowadays. This evolution is 
due to the elaborate work of researchers working in the field of metal forming and is shown in 
authoritative conferences concerning sheet metal forming [Numiform, 1986, 1989, 1992, 
1995, 1998], [Numisheet, 1991, 1993, 1996, 1999]. Developments have been made in the 
field of finite element types, mesh adaptivity, material laws, failure criteria, wrinkling and 
surface defects, springback, contact algorithms, friction, simulation of new processes (for 
example hydroforming), optimization and process design.  

The conventional finite element codes are based on implicit time integration. This involves 
repeated solutions of large systems of equations. Furthermore, equilibrium must be fulfilled 
after each incremental step. As a result, implicit codes are computational time and memory 
consuming. Hence, a new class of finite element codes based on explicit time integration was 
developed, resulting in a drastic decrease of computational time. In an explicit code no system 
of equations needs to be solved and static equilibrium is not checked after each incremental 
step, as the algorithm assumes an inertia dominated process. The explicit procedure is 
conditionally stable with a critical time step, which is proportional to the smallest element in 
the mesh [Mattiasson, 1991]. However, in most sheet metal forming processes inertia effects 
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can be neglected. In order to apply the explicit algorithms in these processes, it is necessary to 
assume artificially high velocities and accelerations or artificially high mass density, which 
seems rather unrealistic [Carleer, 1996]. At the present time, the competition between implicit 
and explicit finite element codes is still in full swing. 

Currently, the accuracy and reliability of numerical simulations of sheet metal forming 
processes do not yet satisfy the industrial requirements. One of the limitations of numerical 
simulations is still the high computational time for complex deep drawing parts, despite the 
development of iterative solvers, fast contact algorithms and the ever ongoing progress in 
computer hardware. Another limitation is the lack of detailed knowledge of material physics 
such as material behavior at high deformations and contact behavior. Therefore extensive 
research in the field of sheet metal forming is and will be necessary to decrease the existing 
gap between the real-life deep drawing process and the predictions obtained from deep 
drawing simulations.    
 
1.3 Previous work and outline of this thesis 
 

The work as described is this thesis is implemented in the implicit finite element code 
DiekA. The finite element code DiekA, developed at the University of Twente, is a multi-
purpose package which is able to simulate various forming processes such as rolling, deep 
drawing, extrusion, cutting and slitting. The deep drawing part of this code was developed in 
close cooperation with Hoogovens Research and Development, a part of the Corus Group 
PLC since October 6, 1999. The development of the deep drawing part of  DiekA was started 
in 1987. In 1992, Vreede presented deep drawing simulation results of axi-symmetric 
products, rectangular products and a simple automotive product, making use of a 3-node 
triangular element based on membrane theory (i.e. only incorporating stretching energy) 
[Vreede, 1992]. The material behavior was described by rigid plastic constitutive relations 
and the planar isotropic Hill yield criterion. The contact behavior was described by special 
contact elements and Coulomb friction. Finally, the tools were numerically described by a 
collection of measurement points or by elements. Figure 1-2 shows an exploded view of the 
deep drawing process, where the tools are modeled with elements. In 1992, the work of 
Vreede was continued by Carleer. The new developments were focused on improving the 
existing code in order to better satisfy the requirements for industrial application. In the 
subsequent five years, the following improvements were implemented [Carleer, 1997]: two 
new 3-node triangular element types, i.e. an element based on Kirchhoff theory (incorporates 
membrane and bending stresses) and an element based on Mindlin theory (incorporates 
membrane, bending and shear stresses). The anisotropic behavior of the material was taken 
into account by implementing the anisotropic Hill’48 yield criterion and the Vegter yield 
criterion based on multiaxial stress states [Vegter, 1999]. An elastoplastic constitutive relation 
was implemented in order to predict the springback behavior after deep drawing. The contact 
description was improved by a fast contact search algorithm and a more sophisticated friction 
model. Finally, an equivalent drawbead model was developed to efficiently incorporate 
drawbeads in a finite element simulation.                
 This thesis presents the research concerning deep drawing simulations of the last four 
years. The objective of the present research was to improve the robustness and accuracy and 
to decrease the computation time of real-life finite element simulations. In Chapter 3 a mixed 
elastoplastic / rigid plastic material model is presented. The objective of this model is that it 
takes advantage of both the elastoplastic and rigid plastic material models, i.e. accuracy and 
fast convergence over a large range of plastic strain increments. Chapter 4 presents a 
sophisticated equivalent drawbead model which incorporates not only the drawbead 
restraining force but also the effects of sheet thinning and strain changes. This equivalent 
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drawbead model replaces the real drawbead geometry in a deep drawing simulation to avoid a 
drastic increase in computation time without significant loss of accuracy. Finally, an adaptive 
remeshing procedure is presented in Chapter 5. The objective of adaptive remeshing is to 
reduce the computational costs (computation time, data storage and time to prepare the initial 
mesh) while still retaining the desired accuracy. 

Punch

Blank holder

Blank

Die

 
Figure 1-2. Exploded view of the deep drawing simulation of an S-rail [Numisheet, 1996]  

 
1.4 Future research 
 

During the last decades, several commercial and research finite element codes have been 
developed that are more or less able to simulate real-life deep drawing processes. Most of 
these codes incorporate sophisticated descriptions of material behavior, fast solvers, element 
types and mesh adaptivity. Recently, they tend to cater also for simulations of new production 
processes such as hydroforming. However, the improvements in the description of contact 
behavior are inferior to the former mentioned points of interest. Since contact should be of 
major concern in simulations, as contact between the blank and the tools is the driving force 
in the deep drawing process,  this inferiority is unsatisfactory. A second topic that is inferior 
to the previously mentioned points of interest is the accurate simulation of the whole 
manufacturing process, comprising deep drawing, trimming, flanging and hemming 
operations. The final product shape is influenced by all these operations due to springback 
after each operation. Therefore it is essential for an accurate prediction of the final product 
shape to accurately describe springback behavior after each operation and take these effects 
into account in the successive operations. Numerically this means that an accurate coupling 
must be developed between the simulations of different operations. This is not as obvious as it 
sounds, since generally deep drawing simulations are performed 3-dimensionally and 
hemming, trimming and flanging operations are modeled in 2 dimensions. Concluding, the 
author recommends an increasing research effort concerning these two inferior topics, since a 
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chain is only as strong as its weakest link and it seems that contact behavior and full process 
modeling are becoming the weaker links.            
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2.  Theoretical background to the finite element method 
 
 
 
2.1 Introduction 
 
 Generally, numerical simulations of forming processes incorporate the deformation of a 
body on a macroscopic scale. The underlying micro-structural changes in the material are 
incorporated as a global average in a macroscopic approach, i.e. the material is treated as a 
continuous medium. An appropriate framework to describe the material behavior is therefore 
continuum mechanics. The basic premise for continuum mechanics is that all thermo-
mechanical processes must obey the conservation laws concerning mass, momentum, and 
energy. In this work, continuum mechanics is restricted to mechanical processes where 
thermal effects are neglected since they are of minor importance in sheet metal forming. A 
weak form of mechanical equilibrium can be derived which is more convenient for numerical 
purposes. The finite element method based on this weak form, discretization and numerical 
integration is applied to solve the problem.   

The kinematics of a deformable body concerns the motion of the material and coordinate 
system from a reference state to the final state and is treated in Section 2.2. To describe the 
material behavior it is necessary to have a measure for the amount of deformation (Section 
2.3) which is unconditionally accompanied by stresses (Section 2.4). The strains and stresses 
are related via constitutive equations, which describe the material behavior (Section 2.5). The 
deformation process must obey the conservation law concerning momentum. Section 2.6 
describes the derivation of the weak form of mechanical equilibrium. This weak form consists 
of a weighted integral formulation of equilibrium and boundary conditions. The finite element 
method is applied to find an approximate solution of the formulated weak mechanical 
equilibrium where use is made of the iterative Newton-Raphson procedure (Section 2.7).      

This chapter is to a large extent based on the work of [Mooi, 1996], [Rietman, 1999] and 
[Huétink, 1999], where the work of Mooi and Rietman is largely based on the elaborate work 
of [Malvern, 1969], [Betten, 1991] and [Simo, 1998]. The following tensor notation is used in 
the present chapter and the subsequent chapters. A first order tensor (vector) is denoted by a 
bold character, a second order tensor is denoted by an underlined character, a third order 
tensor is denoted by an underlined bold character and finally a fourth order tensor is denoted 
by a double underlined character.  
 
2.2 Kinematics 
 

The kinematics of a deformable body concerns the motion of a material and coordinate 
system from an initial state (reference state) to the final situation. In the reference 
configuration a material particle is located at position X, and the current (spatial) position of 
the material particle is defined as x. Several definitions of motion can be used. In the 
reference description the only independent variables are the initial position X of a material 
particle in an arbitrary reference configuration and time t. In this definition the observer can 
be thought of as moving with the material particle. A special case is the Langrangian 
description in which the reference configuration is chosen to be the initial configuration at 
time t = 0. Another description of motion is the Eulerian description. Here the only 
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independent variables are the current location x of a material particle and time t. In this 
definition the observer is located at a fixed point in space. 

The motion of a continuum body is a one-parameter family of configurations indexed by 
time [Simo, 1998]. Explicitly, let [0,T] ⊂ ℜ+ be the time interval of interest. Then, for each t 
∈ [0,T], the mapping ϕt is defined as: 

ϕt t:B S→ ⊂ ℜ3  (2-1)

which maps the reference configuration B onto the configuration S ⊂ ℜ3 at time t, graphically 
represented in Figure 2-3. 

 
Figure 2-3. Motion of material point 

Hence, the spatial position x for the position of X ∈ B at time t becomes: 

x X X= =ϕ ϕt t( ) ( , )  (2-2)

From now on, the formulation is restricted to situations in which the spatial configuration 
initially equals the reference state (ϕ(X,t = 0) = X). The displacement of a material particle is 
written as: 

u  x X X X = t− = −ϕ( , )  (2-3)

Application of the concept of motion in evolving processes necessitates the introduction of 
time derivatives of field and state variables. The material time derivative of a certain field or 
state variable Θ in the Lagrangian description is defined for a material particle as: 

& ( , ) ( , )
Θ

ΘX Xt t
t

=
∂

∂
 (2-4)

In this Lagrangian or material description the independent variable is the reference position X. 
In the Eulerian or spatial description the only independent variable is the fixed position in 
space. The material time derivative for a material particle at spatial position x is derived to be: 

& ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )Θ ΘX X x x x
x

x x v xt
t

t d
dt

t t
t

t
t

t
t

t= = = + ⋅ = + ⋅ ∇
∂
∂

θ ∂θ
∂

∂θ
∂

∂
∂

∂θ
∂

θ
v

 (2-5)

where θ is a certain field or state variable in the Eulerian description,
v
∇  is the pre-gradient 

and v is the spatial velocity. The material time derivative is split into two parts. The first part 
of the right hand side of equation (2-5) is the spatial time derivative which is viewed by an 
observer in a fixed position. The second term is the convective part; the value of θ at position 
x changes because another particle with a different value of θ passes by. The split into a 
spatial part and a convective part is necessary if θ is only known in Eulerian coordinates. 
 The deformation gradient F relates the spatial configuration to the reference configuration 
for a material particle: 
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F t( , )X x
X

x= = ∇
∂
∂

w
0  (2-6)

where
w
∇0 is the post-gradient with respect to the initial coordinates. Taking the time derivative 

of F gives: 

&F d
dt

F= = = ⋅ ∇ ⋅
∂
∂

∂
∂

∂
∂

∂
∂

x
X

v
X

v
x

x
X

= v
w

 (2-7)

The spatial velocity gradient L is defined by: 

L F F= ∇ = ⋅ −v
w

& 1  (2-8)

Generally, a 2nd order tensor can be decomposed into a symmetric part and a skew-symmetric 
part: 

L D W= +  (2-9)

where D is the symmetric spatial rate of deformation: 

( )D L LT= 1
2 +  (2-10)

and W is the skew-symmetric spin tensor: 

( )W L LT= 1
2 -  (2-11)

Another commonly adopted decomposition is the polar decomposition. The deformation 
gradient is multiplicatively decomposed into an orthogonal rotation tensor R* and a symmetric 
positive definite stretch tensor U (right-) or V (left-), see equation (2-12). The polar 
decomposition can be interpreted as a rigid rotation after deformation or vice versa. 

F R U V R= ⋅ = ⋅* *  (2-12)

The right stretch tensor U is invariant and the left stretch tensor V is objective. A tensor is 
invariant if it does not change as a result of rigid body motion. Objectivity means that an 
observer, wherever he may be located, always observes the same strain in a given body. In 
other words, when a rigid body rotation Q is added to the motion of a body, then objective 
tensors are modified by multiplying by Q. In mathematical notation, a vector v and a second 
order tensor T transform with:  

v v* = ⋅

= ⋅ ⋅

Q

T Q T QT*
 

(2-13)

where Q is an orthogonal second order tensor and the asterisk denotes the transformed state. 
For elastoplastic material behavior, the deformation has to be subdivided into an elastic 

part and a plastic part: 

U U Ue p= ⋅  (2-14)

Generally, this multiplicative decomposition does not result into two symmetric tensors. 
Consequently, a polar decomposition of the deformation gradient into a symmetric part and a 
rotation part is not convenient in the case of elastoplasticity. Therefore a weaker (not unique) 
decomposition is introduced: 
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F R G= ⋅  (2-15)

Here the orthogonal rotation tensor R contains rigid body rotations, and the deformation 
tensor G contains the symmetric part of the deformation and the rotation of the material 
orientation (development of texture during forming). Note that this deformation tensor G is 
not necessarily symmetric. The tensors R and G relate to the spin tensor W and the rate of 
deformation tensor D as follows. The spatial velocity gradient L can be written as: 

( )L F F R G R G G R R R R G G RT T T= ⋅ = ⋅ + ⋅ ⋅ ⋅ = ⋅ + ⋅ ⋅ ⋅− − −& & & & &1 1 1  (2-16)

Next, it is defined that the orthogonal rotation tensor R relates to the spin tensor W through:  

&R R WT⋅ =  (2-17)

Consequently, see equation (2-9), the deformation tensor G relates to the rate of deformation 
tensor D through:  

D R G G RT= ⋅ ⋅ ⋅−& 1  (2-18)

Since D is symmetric, it can be concluded that &G G⋅ −1 is also symmetric (equations (2-9) and 
(2-17)). The invariant rate of deformation tensor D* equals: 

D G G* &= ⋅ −1  (2-19)

The deformation tensor G can be decomposed into a reversible (elastic) part Ge and an 
irreversible (plastic) part Gp: 

G G Ge p= ⋅  (2-20)

The deformation gradient can also be decomposed into a reversible part Fe and an irreversible 
part Fp: 

F F Fe p= ⋅  (2-21)

Since decomposition into a reversible part and an irreversible part is not unique, the 
deformation tensor G can also be written as: 

 G G Q Q Ge T p= ⋅ ⋅ ⋅  (2-22)

where Q is an orthogonal tensor that satisfies the requirement that Ge · Q is symmetric. Next 
define: 

U G Q

F Q G

e e

p T p

= ⋅

= ⋅
 

(2-23)

Note that QT · Gp is generally not symmetric. The deformation tensor G can now be written 
as: 

G U Fe p= ⋅  (2-24)

Substituting equations (2-24) and (2-21) into equation (2-15) gives the relation between Fe 
and Ue: 

F R Ue e= ⋅  (2-25)
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Note that when the total deformation is elastic, equation (2-25) does not degenerate to the 
polar decomposition (equation (2-12)). In that case, Gp is the unit tensor and Fp = QT, see 
equation (2-23).  
 
2.3 Strain definition 
 

For the description of material behavior it is necessary to have a measure for the amount of 
deformation. The definition of the deformation gradient is utilized for this purpose, defining 
the right and the left Cauchy-Green tensors respectively: 

C F F

B F F

T

T

= ⋅

= ⋅
 

(2-26)

The Cauchy-Green tensors are called metric tensors because they describe the deformed 
metric of a body. The right Cauchy-Green tensor C, also called the Cauchy tensor, is 
invariant. The left Cauchy-Green tensor B, also called the Finger tensor, is objective.  

The right and left Cauchy-Green tensors are indeed a measure for the strain since they map 
the length of an infinitesimal vector in the initial configuration onto the length of the same 
infinitesimal vector in the current state. The length of a current infinitesimal vector dx in the 
Lagrangian coordinates is defined by: 

 ( ) ( ) ( )ds d d F d F d F F d d C d dT2 = ⋅ = ⋅ ⋅ ⋅ = ⋅ =x x X X X X X X: :  (2-27)

Likewise, the length of the initial vector dX can be obtained in Eulerian coordinates: 

( ) ( ) ( )ds d d F d F d F F d d B d dT
0
2 1 1 1 1= ⋅ = ⋅ ⋅ ⋅ = ⋅ =− − − −X X x x x x x x: :  (2-28)

If there is no deformation both Cauchy-Green tensors equal the unit tensor. From an 
engineering point of view it is much more convenient to work with a strain measure which 
vanishes in the case of zero deformation. This is obtained when considering the length 
difference before and after deformation: 

ds ds d d d d2
0
2− = ⋅ − ⋅x x X X  (2-29)

               X X X X= − =( ): :C I d d E d d2  (2-30)

               x x x x= − =−( ): :I B d d e d d1 2  (2-31)

where E is the Lagrangian or Green-Lagrange strain tensor, e is the Eulerian or Euler-Almansi 
strain tensor and I is the second order unit tensor. Both strain tensors can be written in terms 
of displacements. First note that the gradient of the displacement u reads, in Lagrangian and 
Eulerian coordinates, respectively: 

u u
X

x X
X

x
X

=

u u
x

x X
x

X
x

=

w

w

∇ = =
−

= − −

∇ = =
−

= − − −

0

1

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

( )

( )

I F I

I I F
 

(2-32)

Then, the Green-Lagrange strain tensor and the Euler-Almansi strain tensors can be written in 
terms of displacements: 
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( )
( )

E

e

= u u u u

= u u u u

1
2 0 0 0 0

1
2

w v v w

w v v w
∇ + ∇ + ∇ ⋅ ∇

∇ + ∇ − ∇ ⋅ ∇
 

(2-33)

Both strain tensors are frequently used in engineering mechanics. The rate of deformation 
tensor relates to the Euler-Almansi tensor via: 

D e e L L eT= + ⋅ + ⋅&  (2-34)

which is also known as the Cottler-Rivlin derivative of e. This relation is obtained by 
combining the time derivatives of the right hand side of equations (2-29) and (2-31). The rate 
of deformation tensor relates to the Green-Lagrange tensor via the time derivatives of 
equations (2-29) and (2-30): 

 &E F D FT= ⋅ ⋅  (2-35)

The nonlinear terms in equation (2-33) can be neglected for small displacements. Also the 
current state nearly equals the reference state for small displacements so that the Green-
Lagrange strain tensor and the Euler-Almansi tensor approach the classical linear strain tensor 
ε : 

( )ε = u u1
2

w v
∇ + ∇ ≈ ≈E e  (2-36)

For small displacements, the Cauchy-Green tensors and the classical linear strain tensor are 
related through: 

C B I C B I≈ ≈ + ≈ ≈ −− −2 21 1ε ε,  (2-37)

 
2.4 Stress definition 
 

Stresses are the response to a certain deformation of a body. The stress is historically 
defined as force per unit area. The Eulerian stress or Cauchy stress tensor σ is defined as 
follows by demanding equilibrium in the current configuration: 
 d dSP n= ⋅σ  (2-38)

where dS is an infinitesimal surface on which a force dP acts. The Cauchy stress is also 
known as the true stress since the actual surface is used for its definition. The Cauchy stress is 
objective by definition in order to fulfill the physical consideration that the stress may not 
depend on the motion of the observer. By considering the equilibrium of moments in an 
infinitesimal volume it follows that: 

 σ σ= T  (2-39)

which is known as the second law of Cauchy. However, the material time derivative of the 
Cauchy stress is not an objective stress rate [Malvern, 1969]. To overcome this problem, 
modified time derivatives may be constructed to preserve objectivity. A commonly used 
objective rate is the corotational stress rate which is frequently referred to as the Jaumann 
stress rate: 

 σ σ σ σo = − ⋅ + ⋅& W W  
(2-40)

 According to Green and Naghdi, also an invariant Cauchy stress tensor σ* can be defined:  
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σ σ* = ⋅ ⋅R RT  (2-41)

where R is defined through equations (2-15) and (2-17). Note that the components of σ, which 
refer to a global basis ei, are equal to the components of σ*, when referred to a local basis bi = 
RT·ei : 

 
σ σ

σ σ

=

=

e e

b b

i ij j

i ij j
*  

(2-42)

As for strains, a Lagrangian definition for stresses can also be constructed. The 2nd Piola-
Kirchhoff stress tensor S is defined in the reference configuration and can be obtained from 
the Cauchy stress by: 

S J F FT= ⋅ ⋅− −σ 1  (2-43)

where the Jacobian J is the determinant of the deformation gradient F and is a measure for 
volumetric deformation. The 2nd Piola-Kirchhoff stress tensor is symmetric and is also 
invariant since it is completely defined with respect to the unchanging Lagrangian 
coordinates.  
 
2.5 Constitutive relations 
 

The strains and conjugate stresses derived within the framework of continuum mechanics 
are related through constitutive equations. The constitutive equations can be considered as the 
response of a material to an applied load. Since different types of material behave in different 
ways, the constitutive equations must include characteristic material responses.   
 The uniaxial tensile test is commonly adopted to study the plastic deformation of metallic 
materials. The uniaxial true stress and the true, logarithmic or natural strain are defined as 
follows: 

σ =
F
A

,           ε = ln l
l0

 (2-44)

where F is the applied load, A is the current cross-sectional area, l is the current length of the 
test specimen and l0 is the initial length of the test specimen. The true stress may be 
interpreted as the Cauchy stress in one dimension. Generally the true stress versus the true 
strain curve shows the characteristics as given in Figure 2-4.  

 
Figure 2-4. Stress-strain curve 
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Generally, the deformation of a metallic material can be subdivided into two stages. The first 
stage is the elastic deformation and is characterized by a linear dependence between the stress 
and the strain. It is covered by the well known Hooke’s law for elasticity σ = Eεe, where E is 
the elasticity or Young’s modulus. The second stage is plastic deformation concerning work 
hardening. The stress increases with increasing strain with a ratio much smaller than Young’s 
modulus. After unloading, a residual strain remains which is the plastic part of the 
deformation εp. The slope of the stress-strain curve during unloading is assumed to be 
constant. As a consequence, the total strain can be decomposed into an elastic strain and a 
plastic strain. 
 However, in forming processes the deformation is multiaxial rather than uniaxial. 
Therefore a multiaxial formulation must be introduced. The starting point of this formulation 
uses Hooke’s law in tensor form, where the rate form of the invariant Cauchy stress σ* is 
related to an invariant strain measure through a constant tensor E/: 

σ * / :( )= −E C Ie  (2-45)

where Ce is the elastic right Cauchy-Green tensor. Hence, the rate of the invariant Cauchy 
stress can be written as: 

& : &* /σ = E Ce  (2-46)

The rate of the elastic right Cauchy-Green tensor can be expressed in terms of the rate of 
deformation tensor: 

& ( ) & & ( )C d
dt

F F F F F F F L L F F D Fe eT e eT e eT e eT e eT e eT e e= ⋅ = ⋅ + ⋅ = ⋅ + = ⋅ ⋅2  
(2-47)

or, when using the decomposition of the deformation gradient as given in equation (2-25): 

&C U R D R Ue e T e e= ⋅ ⋅ ⋅ ⋅2  (2-48)

Generally, the elastic part of deformation is very small in metal forming processes and 
consequently Ue can be approximated by the second order unit tensor. Hence, equation (2-48) 
can be written as: 

& *C R D R De T e e= ⋅ ⋅ =2 2  (2-49)

where the invariant rate of elastic deformation is defined by De*. Substituting equation (2-49) 
into equation (2-46) gives an expression for the rate of the invariant Cauchy stress: 

& :* *σ = E De  (2-50)

where E is the experimentally determined fourth order elasticity tensor. 
In order to extend this constitutive rate equation to plastic deformation, the total strain rate 

is decomposed into an elastic part and a plastic part:  

D D De p* * *= +  (2-51)

Plastic deformation is defined to occur when the multiaxial stress state reaches the yield 
surface φ, represented in a six-dimensional stress space by: 

φ φ σ β= =( , )* 0  (2-52)
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where the tensor β represents the hardening. In case of isotropic hardening this tensor β can 
be written as Iκ, where κ is the equivalent plastic strain. The deformation is elastic when 
φ < 0  or φ φ= ∧ <0 0& . Plastic deformation occurs when φ φ= ∧ =0 0& . Furthermore, the 
plastic deformation rate is related to the gradient of a plastic potential according to the 
normality or flow rule. Associated flow is assumed, which means that the plastic potential and 
the yield function coincide. Consequently, the plastic deformation rate is orthogonal to the 
yield surface:  

D p*
*

&= λ ∂φ
∂σ

 (2-53)

where &λ  is the plastic multiplier, a scaling constant. Substituting the relations for the plastic 
strain, equations (2-51) and (2-53), into the constitutive rate equation (2-50), gives: 

& : &* *
*σ λ ∂φ

∂σ
= −









E D  

(2-54)

Assuming a given description of the yield function, the only unknown to be determined is the 
plastic multiplier &λ . As stated before, for plastic deformation the stress must lie on the yield 
surface and it must also remain on the yield surface, so that: 

& : & : &*
*φ ∂φ

∂σ
σ ∂φ

∂ β
β= + = 0  (2-55)

The second term in equation (2-55) represents the hardening and is proportional to the plastic 
multiplier. Therefore this second term is a regular function of the plastic multiplier which 
vanishes if the plastic multiplier vanishes. Without loss of generality, equation (2-55) can be 
written as: 

 & : & &
*

*φ ∂φ
∂σ

σ λ= + =f 0  (2-56)

where f is a scalar function which depends on the yield function used. Substituting equation 
(2-54) into (2-56) gives an expression for the plastic multiplier: 

∂φ
∂σ

λ ∂φ
∂σ

λ*
*

*: : & &E D f−








 + = ⇔0        

&
: :

: :

*
*

* *

λ

∂φ
∂σ

∂φ
∂σ

∂φ
∂σ

=
−

E D

E f
 

(2-57)

Substituting this expression for the plastic multiplier into the constitutive rate equation (2-54), 
gives the following constitutive rate equation: 

( )& ( ) :* *σ = − −E h Y D1  (2-58)

 where: 
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h f

f E
=

−
∂φ

∂σ
∂φ

∂σ* *: :
 (2-59)

and: 

Y
E E

E
=

: :

: :

* *

* *

∂φ
∂σ

∂φ
∂σ

∂φ
∂σ

∂φ
∂σ

 

(2-60)

 
2.6 Weak equilibrium 
 

All thermo-mechanical processes must obey the conservation laws concerning mass, 
momentum, and energy. In this work, the attention is restricted to mechanical processes 
where thermal effects are neglected since they are only of minor importance in sheet metal 
forming. In other words, an arbitrary body must be in mechanical equilibrium, i.e. it obeys the 
conservation law of momentum: 

σ ρ ρ⋅ ∇ + =
w

f v&  (2-61)

where f represents body forces. For many forming processes the inertia forces ( ρ &v ) can be 
neglected since these processes are relatively slow. The strong formulation of the mechanical 
problem is to find a solution u, so that mechanical equilibrium within the domain V and the 
boundary conditions on surface S are fulfilled: 

σ ρ

σ

⋅ ∇ + =
=
⋅ =

w
f

u u
n t

0

0

in    
on    
on    

V
S
S

u

t

 

(2-62)

where n is the outward normal with respect to the boundary, t is the surface traction and u0 
are the prescribed displacements. However, the strong form of equilibrium is stringent. It 
demands that the gradient of the stress exist, which means that the stress distribution within 
the domain must be continuous. However, for numerical purposes it is more convenient to 
derive a weak formulation of equilibrium. This can be achieved by weighting the equilibrium 
conditions with arbitrary weight functions δv in an integral formulation, such that the solution 
is less constrained by differentiability demands:  

δ σ ρδ δ σv v f v n t⋅ ⋅ ∇ + ⋅ − ⋅ ⋅ − =∫ ∫ ∫( ) ( )
w

V V S

dV dV dS 0  (2-63)

The only requirement the weight functions have to fulfill is that they are piecewise 
differentiable. Applying the following chain rule: 

δ σ δ σ δ σv v v⋅ ⋅ ∇ = ⋅ ⋅ ∇ − ∇( ) ( ) :
w w w

 (2-64)

as well as the Gauss divergence theorem: 

 g g n⋅ ∇ = ⋅∫ ∫
w

V S

dV dS  (2-65)

to equation (2-63), yields the following expression for the weak mechanical equilibrium: 
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δ σ ρδ δv v f v t
w
∇ = ⋅ + ⋅∫ ∫ ∫

V V S

dV dV dS:  (2-66)

Note that only the stress and not the gradient of the stress must be known in this weak 
formulation. This implies that the stress needs not be continuous, but can for example be 
piecewise linear, which is an ideal starting point for a finite element procedure.   
 
2.7 Finite element method 
 

A spatial discretization can be used to find an approximate solution of the previously 
formulated weak mechanical equilibrium equations. Historically, the most common way to 
discretize domains for structural and plasticity problems is a finite element discretization, 
which will be treated in Section 2.7.1 [Zienkiewicz, 1991].     

The expressions in the weak mechanical equilibrium are generally non-linear and therefore 
an incremental-iterative procedure is applied to solve the problem. The weak equilibrium 
equations are evaluated at a number of discrete points in the time domain. Considering one 
such time increment, the field and state variables are known at the start of the time increment 
t(n), whereas they are unknown at the end of the time increment t(n+1). In a standard implicit 
manner the problem can be written as: 

x x u( ) ( )

( ) ( )

( ) ( )( )

n+ n

n+ n

n+ n+f

1

1

1 1

= +

= +

=

∆

∆ε ε ε

σ ε

 

(2-67)

where use is made of u v= ∆t  and ∆ ∆ ∆ ∆ε = = ∇ ∇D t +½( )u u
w v

. The stress state at the end of 
the time increment is determined with a stress update algorithm, see Chapter 3. In order to 
obtain global equilibrium values at the end of the time increment, an iterative algorithm must 
be applied. In this work the well-known Newton-Raphson iterative procedure is used and is 
described in Section 2.7.2. When the equilibrium values are determined, the current 
configuration is used as the initial configuration for the next increment: B(n+1) := S(n). 
 
 
2.7.1 Finite element discretization 
 
 The finite element discretization of a domain V consists of the definition of subdomains 
with a finite size Ve, the elements, and the respective interpolation functions. Evaluation of 
integrals is performed over these elements. Later, the contribution of each element is 
assembled into a large system representing the whole domain, yielding an approximate 
solution for the whole domain. 

An element is defined by means of pre-defined points, the nodes. Within the element, use 
is made of natural coordinates which are only valid in one element. The interpolation 
functions have to provide continuous functions for the interpolated field and state variables 
within an element. The interpolation functions relate quantities at any point in the interior of 
the element to the nodal point values. For isoparametric elements the same interpolation is 
applied for both the geometry and the independent field variables ξ: 
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where Nα is the time independent interpolation function for node α of the element and n is the 
number of nodes per element. The summation operator will be omitted from now on, since the 
summation convention applies. Integrals over the element are determined using numerical 
integration. Accurate higher order integration is obtained by Gaussian quadrature [Bathe, 
1982], [Segerlind, 1984]. The Gauss points are often referred to as integration points.  

To discretize the weak mechanical equilibrium, all continuous field variables and their 
gradients are determined by the interpolation functions and the nodal values, leading to: 

v v v v

v v v v

= =

∇ = = ∇ ∇ = ∇

N N

L N N

α α α α

α α α α

δ δ

δ δ
w v w v  

(2-69)

The rate of deformation is written as: 

D v v N N v B vi j j i j ik i jk k ijk k
t= + = + = = ⋅ = ⋅1

2
1
2( ) ( ), , , ,

α α α α α α α α αδ δ B v v B  (2-70)

where Bα and Btα are third order tensors that relate the deformation rate tensor to the nodal 
velocity vector. These tensors read in tensor notation: 
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where T is a fourth order index permutation tensor which reads in index notation Tijkl = δilδjk. 
When Btα is double contracted with a symmetric second order tensor ϕ, the product 
degenerates to: 

B t I Nα αϕ ϕ: := ∇
v

 (2-72)

Using equation (2-69) in equation (2-66) gives the discretized form of the weak mechanical 
equilibrium: 

δ σ ρ δ δα α α α α αv v f v t
v
∇ = ⋅ + ⋅∫ ∫ ∫N dV N dV N dS

Ve Ve Se

:  (2-73)

Or, after rewriting and substituting equation (2-72): 
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(2-74)

where Fα
int is the internal reaction force vector and Fα

ext the external force vector. Since 
equation (2-74) must hold for all virtual velocity fields, the following equality is obtained for 
the internal and external force vector: 

F Fint
α α= ext  (2-75)
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2.7.2 Iterative Newton-Raphson procedure 
 

The discrete equilibrium equation (2-75) is generally non-linear and can therefore be 
solved with the iterative Newton-Raphson procedure. A Newton-Raphson iteration consists of 
two stages which are referred to as the predictor step and the corrector step, respectively. In 
the predictor step an estimate of the solution is obtained based on linearization in the current 
iteration. The corrector step provides the resulting reaction force for this iteration.  

 The starting point of the Newton-Raphson procedure is the assumption that the 
displacement vector u0 is a good approximation to solve the equality equation. It is assumed 
that $u  is the exact unknown solution of this non-linear equation and hence, define 
∆u u u= −$ 0 . Consequently, the equality equation can be written as:    

F u F u u Fint int( $ ) ( )= + =0 ∆ ext  (2-76)

Note that the superscript α, indicating the nodes, is omitted in this section to facilitate 
readability. Applying a Taylor series expansion to this equation yields: 

F u F u F
u

u u F
u

int int
int( $) ( ) )= + ⋅ + =0

0

2d
d ext∆ ∆O(  

(2-77)

Neglecting the higher order terms O(∆u2) and rearranging gives: 

K K d
dext0 1 0 0 0

0

⋅ = − = =∆u F F u R F
u

u
int

int( )        with        
(2-78)

where K0 is the tangent stiffness matrix and R0 is the residual force vector which vanishes 
when the exact solution is found. The unknown displacement increment ∆u1 can be solved 
using equation (2-78). However, u0 + ∆u1 is no longer equal to the exact solution $u , since the 
higher order terms are omitted. It is likely that the new approximation of the displacement 
vector, u1 = u0 + ∆u1, is a better approximation for the exact solution than the old 
approximation u0. The procedure is repeated again using u1 as the initial approximation. With 
the new approximation u1, a new stiffness matrix K1 and internal force vector Fint(u1) are 
determined. Subsequently, ∆u2 is calculated using equation (2-78) and the new displacement 
vector is set to u2 = u1 + ∆u2. This procedure is repeated until a user-defined accuracy is 
reached, see equation (2-79).  

u R F F u
R

u F F u R
u u u

F u

0 0 0

1

1 1

0

1

= = − =

>

⋅ = − =
= +

= +

+

+ +

0  ,     ,   

while    do
determine

determine

end while

ext

k

k

k k ext k k

k k k

k

k

error
K

K

k k

int

int

int

( )

( )

( )

( )
:

∆
∆

 

(2-79)

In the above algorithm, it is assumed that Fext does not depend on ∆u. However, if Fext 
depends on ∆u (e.g. in pressure loads), this can easily be incorporated in the algorithm. 
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In one dimension, the iterative Newton-Raphson process can be graphically represented as 
shown in Figure 2-5:  

 
Figure 2-5. Newton-Raphson iteration scheme 

The expressions for the internal force vector Fint(uk) and the stiffness matrix Kk must be 
determined in order to reach equilibrium using the iterative Newton-Raphson procedure. 
 
2.7.2.1 Determination of the internal force vector 
 
Within a numerical time increment, the total displacement is only determined at the start and 
the end of the time increment. The stress at the end of the time increment must be calculated. 
This is done by a stress update algorithm, see Chapter 3. In the in-house code DiekA this 
stress update algorithm is performed in a local coordinate system. The definition for the 
internal force vector is given in equation (2-74). However, this force vector is defined in 
terms of the Cauchy stress which is defined in the global coordinate system. Therefore the 
local invariant Cauchy stress σ∗ has to be transformed to the Cauchy stress through equation 
(2-41). Consequently, the following expression for the internal force vector is obtained: 

F Bint
α α

σ= ⋅ ⋅∫
Ve

t TR R dV:( )*  (2-80)

 
2.7.2.2 Determination of the stiffness matrix 
 
 The starting point for the derivation of the stiffness matrix is the time derivative of the 
internal force vector: 

& &F F F
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u uint
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β
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d
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d
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d
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K  
(2-81)

Since the internal force vector is defined in the current configuration which changes in time, it 
will be difficult to derive the material time derivative of the internal force vector. Therefore 
the internal force vector is transformed into an integral with respect to the initial 
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configuration. Then, the material time derivative of the integral only consists of the material 
time derivatives of the terms within the integral. After determining the material time 
derivative in the initial configuration, the integral is transformed to the current configuration. 
The transformation of the internal force vector from the current configuration to the initial 
configuration reads:    

( )Fint
α α

α
ασ

∂
∂

∂
∂

σ σ= ∇ = = ∇ ⋅∫ ∫ ∫ −I N dV I
N
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dV I N F JdV
Ve

ij
lVe

l

k
jk

V e

Tv v
: :

,

0

0

0  
(2-82)

where J is the Jacobian (determinant of the deformation gradient F). The time derivative of 
the internal force vector becomes: 

( )& : & : &
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where the time derivative of J is neglected since the volume changes are only elastic and very 
small. Note that when the time derivative of the density is incorporated in the constitutive 
equations, the time derivative of J cancels out with the extra term concerning the density, see 
[Mooi, 1996]. 
An expression must be found for the time derivative of the transposed form of the inverse of 
the deformation gradient F: 
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Substitution of equation (2-84) in equation (2-83) gives: 
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The transformation of the time derivative of the internal force vector from the current to the 
initial configuration is obtained through equation (2-82): 

( )& : & :Fint
α α ασ σ= ∇ + ∇ ⋅∫ ∫I N dV I N L dV

Ve Ve

Tv v
 (2-86)

This equation must be rewritten in terms of &uβ . The time derivative of the Cauchy stress 
reads, see equation (2-41): 

& & & &* * *σ σ σ σ= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅R R R R R RT T T  (2-87)

Now, the first term of the right hand side of equation (2-86) can be rewritten as: 
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The following multiplication rule applies for permutation of products of tensors [Huétink, 
1986]: 

A B C A H C BT⋅ ⋅ = ⋅ ⋅( ):  (2-89)

where A, B and C are arbitrary second order tensors and H is the fourth order unit tensor. 
Making use of equations (2-70) and (2-89), the second part of equation (2-88) reads: 
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where the invariant rate of deformation tensor D*  relates to the rate of deformation tensor D 
through: 

D R D RT* = ⋅ ⋅  (2-91)

The fourth order tensor Ly denotes the material tensor, which for example could be the 
continuum material tensor as given in equation (2-58). 
Next, the first and third term of equation (2-88) have to be rewritten. It is derived that: 

& &R R R RT T
⋅ = − ⋅  (2-92)

making use of (R·RT) = I. The deformation tensor F is decomposed as defined in equation (2-
15) and subsequently it is defined that &R ⋅RT is equal to the spin tensor W, see equation (2-
17).  
The first and third term of equation (2-88) can now be rewritten as: 
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 = ∇ ⋅ − ⋅∫ ∫α ασ σ σ σ: & & :  (2-93)

Combining equation (2-93) with the second term of equation (2-86) gives: 
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With equations (2-69) and (2-70) this expression becomes: 

( )I N N dV I N H H dV
Ve Ve

v v v
∇ ⋅ ⋅ ∇ ⋅ − ∇ ⋅ + ⋅ ⋅∫ ∫α β β α β βσ σ σ& : : &u B u  (2-95)

The time derivative of the internal force vector (equation (2-86)) is obtained by combining 
equations (2-90) and (2-95): 
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Finally, the stiffness matrix K, as defined in equation (2-81), becomes:  
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3.  Mixed elastoplastic / rigid plastic material model for 
    Hill’48 anisotropic material behavior 
 
 
 
3.1 Introduction 
 

The plastic deformation of the material is described by constitutive relations which are 
usually based on rate equations. A yield function defines the stress states at which a material 
starts to deform plastically. Drucker [Drucker, 1949] postulated that for metal plasticity the 
direction of the plastic flow rate is perpendicular to the yield surface. The magnitude of the 
plastic flow rate is determined by a consistency relation to keep the current stress state on the 
yield surface and this consistency relation equivalently fulfills the Kuhn-Tucker 
complementary conditions [Simo, 1998]. 

For use in an incremental procedure the plastic strain rate must be integrated to yield a 
plastic strain increment. Many of these algorithms are based on an elastic predictor / plastic 
corrector scheme [Rice, 1971], [Wilkins, 1964]. The direction of the plastic flow can be 
interpolated between the directions calculated at the start and at the end of a strain increment 
[Nikishkov, 1993], [Ortiz, 1985]. As mentioned, the magnitude of the plastic flow is 
determined by a consistency relation, i.e. the stress state remains on the yield surface.  

The advantage of these elastoplastic algorithms is that they give an accurate description of 
the material behavior and that they incorporate elastic effects such as springback. However, 
elastoplastic algorithms can give rise to numerical instabilities due to the transition from 
elastic to plastic behavior which is incorporated in these models. When the strain increments 
are large, the elastic part of the strain can be neglected without a serious loss of accuracy. In 
that case the plastic strain equals the total strain which is better known as rigid plastic 
material behavior. 

In deep drawing simulations, the rigid plastic material model is widely used because of its 
fast and numerically robust behavior. The model yields accurate results for large strain 
increments compared to the elastic limit strain. However, the rigid plastic material model 
becomes unstable or inaccurate in cases where the strain increments are small, for example in 
dead metal zones. Another drawback of the rigid plastic approach is that elastic phenomena 
such as springback cannot be described. Therefore, the use of the elastoplastic material model 
is favored despite of its drawbacks (potential to numerical instability and high computation 
time) compared to the rigid plastic material model. 

Huétink et al. developed a new integration algorithm for large plastic deformations in 
combination with Von Mises material behavior [Huétink, 1999]. The algorithm degenerates to 
the Euler forward elastoplastic material model for small strain increments and to the rigid 
plastic material model for large strain increments. This new model benefits from the 
advantages of both the elastoplastic and rigid plastic material model: accuracy and fast 
convergence over a large range of plastic strain increments. 

In this chapter a new integration algorithm is derived for large plastic deformations in 
combination with the Hill’48 yield criterion [Hill, 1950] similar to the approach of Huétink 
using Von Mises material behavior. Note that in this chapter stresses and strains are regarded 
as invariant tensors, as introduced in Chapter 2. The asterisks, denoting the invariant form, 
will be dropped for convenience.  
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3.2  Hill’48 planar anisotropic material model 
 
A yield function that can capture orthotropy has been proposed by Hill [Hill, 1950] as an 

extension of the Von Mises criterion. In its most general form, the Hill’48 yield criterion can 
be written as: 

φ σ σ σ σ σ σ σ σ σ

σ

= − + − + − + + +

− + + =

F G H L M N

F G H

y z z x x y yz zx xy

y

( ) ( ) ( )

( )

2 2 2 2 2 2

2
3

2

2 2 2

0
 

(3-
98) 

where σy is the yield stress. The material x-, y- and z-directions coincide with the axes of 
orthotropy. The parameters F, G, H, L, M and N describe the anisotropy of the material and 
can be defined as functions of the planar anisotropy parameters R0, R45 and R90 [Carleer, 
1997].  
Introducing the fourth order tensor P [Borst, 1990], here written as a matrix: 
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the expression for the Hill yield criterion can be simplified to: 

( )φ σ σ σ σ σ ξσ= − + + = − =T
y

T
yP F G H P: : : :2

3 0  (3-
100) 

Since the Cauchy stress tensor is symmetric (σ = σT), the superscript T denoting the 
transposed form will be dropped for convenience. The derivative of φ to σ is: 
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The plastic strain rate obeys the associative flow rule according to Drucker: 
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The definition of the equivalent plastic strain rate &κ  follows from the plastic deformation 
energy and equations (3-100) and  (3-102): 
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103) 

Note that the matrix P, given in the form of equation (3-99), is singular and thus not invertible 
since the Hill’48 yield criterion is insensitive to hydrostatic pressure. Consequently, the 
equivalent plastic strain rate cannot be determined. This problem can be solved by allowing a 
small amount of compressibility [Koenis, 1994]. However, in simulations of sheet metal 
forming, a plane stress is generally assumed (σz = σxz = σyz = 0). Applying the plane stress 
state, the matrix P degenerates to a 3*3 matrix which is invertible, without the necessity to 
allow compressibility. 
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The relation between the equivalent plastic strain rate &κ  and the plastic multiplier &λ  is 
also derived from the plastic deformation energy and equations (3-100) and (3-102): 

σ κ σ ε λ
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ξσ λ ξσ κ ξλy
p

y y
y yP⋅ = = = = ⇒ =& : &

&
: :

&
& & &2  
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The hardening parameter f can be determined for isotropic hardening, starting with equations 
(2-55) and (2-56). In this case the hardening tensor β is defined as a second order unit tensor 
with a magnitude of the equivalent plastic strain rate &κ [Vreede, 1992]. 
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With the hardening modulus h
d
d

y=
σ
κ

 one can define the hardening parameter f as: 

f
P

hy= = =
−

= − ⋅
∂φ
∂κ

κ
λ

∂φ
∂κ

ξ
∂ σ σ ξσ

∂κ
ξ ξ

&
&

( : : )
 

(3-
106) 

 
3.3  Time integration of stress-strain relation 
 

The relations from the previous section are in rate formulation and hence not readily 
applicable in a finite element analysis. To solve these equations numerically they have to be 
discretized in time. The assumptions used in the numerical integration algorithm are decisive 
for the accuracy and the stability of the method [Ortiz, 1985]. In rate independent plasticity 
the time discretization can be seen as a chronology of events rather than its physical 
equivalent. In a finite element context the loading history is then divided into a number of 
load steps or displacement increments. The resulting equations are solved in an iterative way. 

For elastoplastic material behavior, the elastic strain tensor is related to the Cauchy stress 
tensor via the elasticity tensor E. When the total strain is decomposed into a plastic part and 
an elastic part, the elastic stress-strain relation in incremental form yields:   

∆ ∆ ∆σ ε ε= −E p:( )  (3-
107) 

The plastic strain rate is integrated by a generalized trapezoidal rule, yielding the following 
expression for the incremental plastic strain ∆εp: 

∆ ∆ ∆ε ε α ε α εp p
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where t0 and t1 bound a time increment and H is the fourth order unit tensor. The direction of 
the incremental plastic strain is determined by interpolating the plastic strain rate directions at 
the start and end of the time increment with the interpolation tensor α. The plastic strain rate 
at time t = t0 and t = t1 is, see equation (3-102): 
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Suppose & &
, ,λ σ λ σ0 0 1 1y y=  to simplify the integration. Physically this means that a linear 

relation between the stress and strain rate is assumed within the time increment. Then, with 
& &κ ξλ= , the incremental plastic strain becomes: 
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Substitution of equation (3-110) in (3-107) yields the expression for the stress state: 
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or in explicit form: 
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Several well known integration techniques are related to a fixed value of the interpolation 
tensor α. For convenience, the interpolation tensor α will be defined as βH in this part of the 
section. Taking β = 0 will lead to the Euler forward method which is based on values at the 
start of the step only. This algorithm is an explicit algorithm since the strain or stress of the 
current step has no influence on the integration algorithm. Taking β = 1 will lead to the Euler 
backward method which is based only on values at the end of the step and thus is a fully 
implicit method. In the case of associated plasticity the Euler backward method degenerates 
to closest point projection. The generalized trapezoidal rule (0 < β < 1) is unconditionally 
stable for β > ½ in the case of the Von Mises yield criterion; for the Hill yield criterion it is 
unconditionally stable for β > βmin where βmin depends on the maximum curvature of the yield 
surface [Atzema, 1994]. The generalized trapezoidal rule degenerates to the generalized 
midpoint rule in case of Von Mises yielding. Also other return mapping algorithms are 
available in where the elastic predictor is returned iteratively to the yield surface, such as the 
well known tangent cutting plane [Simo, 1985a], [Ortiz, 1986], [Hughes, 1998]. 

For rigid plastic material behavior, also referred to as the flow formulation, the elastic 
deformations are totally ignored, i.e. the calculated strain increment equals the plastic strain 
increment. Hence the total strain rate can be expressed as, see equation (3-102): 

&
&

:ε λ
ξσ

σ=
y

P  
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Rearranging the above equation and writing it in incremental form yields an expression for 
the rigid plastic stress state: 
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σ
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ε
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ε1
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∆  
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3.4 Stress update algorithm 
 

Within a numerical time increment, the total strain is only determined at the start and at the 
end of the time increment. The stress at the end of the time increment must be calculated. The 
task of the stress integration is only to calculate the stress for a prescribed strain increment. If 
the calculated stress does not match the weighted equilibrium at a global level, a new strain 
increment has to be calculated.  

The new stress state σ1 is determined using an elastic predictor / plastic corrector method. 
The basic idea is to treat the total strain increment as elastic, calculate the corresponding 
stress, and then project this calculated stress onto the yield surface. The elastic predictor 
defines a trial stress state σt: 
σ σ εt E= +0 :∆  (3-

115) 

where σ0 is the stress state at time t0.  
If the trial stress state lies outside the yield surface then φ(σt,κ) > 0. Since the yield 

function can never be larger than 0, a plastic corrector has to be used to determine a new 
stress state σ1 which lies on the yield surface (φ(σ1,κ) = 0). The new stress state σ1 can be 
determined by writing equation (3-112) as a function of the trial stress state:    
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Define the fourth order tensor A: 

A H E P
y

= +










∆κ
ξσ

α: :  
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Note that the tensor A is symmetric for Hill’48 anisotropic yielding (Aijkl = Aklij), which means 
that the transposed form of A is identical to A. Hence, equation (3-111) can be simplified to: 

σ σ κ
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α σ1
1 1

0= − −− −A A E H Pt
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The equivalent plastic strain increment ∆κ must be known in order to calculate the new stress 
state σ1. The value of ∆κ is derived from the consistency relation φ(σ,κ) = 0 as follows. The 
yield function depends on ∆κ : 
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Here σy and the tensor A are functions of the equivalent plastic strain increment ∆κ. Therefore 
equation (3-119) is a non-linear relation that must be solved by an iterative procedure, e.g. by 
a Newton-Raphson method: 

∆ ∆ ∆κ κ φ
κ

φ κk k
d
d+

−
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1

1
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Assume that the fourth order tensor α depends on ∆κ : 
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then the general expression for 
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 yields, with the hardening modulus h
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where: 
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Now, one is able to iteratively determine the incremental equivalent plastic strain ∆κ : 
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3.4.1 Example: Euler backward stress update 
 

For Euler backward integration, the interpolation tensor α equals the unit tensor. 
Subsequently the plastic strain tensor can be written as, see equation (3-108): 
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The stress update depends on the state at the end of the step only, and the direction of the 
plastic strain rate is perpendicular to the yield surface at the end of the step. The new stress 
state is written as, see equation (3-118): 

σ σ1
1= −A t:  (3-
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where: 
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y

= +










∆κ
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Since α = H, one can write: 

ψ = 0 (3-
128) 

Thus, the expression for the derivative of the fourth tensor A (equation (3-123)) yields: 
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which gives, in combination with equation (3-122), the expression for ( )d dφ κ  in the case of 
Euler backward integration:  
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3.5 Consistent stiffness tensor 
 

To preserve fast convergence of the global weak equilibrium, the stiffness tensor must be 
set up consistent with the integration algorithm [Simo, 1985b]. Hence, this stiffness tensor 
used in the predictor step should be consistent with the incremental constitutive relations, not 
the continuum constitutive relations [Atzema, 1992]. In this section the consistent stiffness 
tensor is derived for both the elastoplastic material behavior and the rigid plastic material 
behavior. 
 
3.5.1 Elastoplastic consistent stiffness tensor 

 
To obtain the consistent stiffness tensor for elastoplastic material behavior, equation (3-

112) must be written in differential form: 
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in which ψ
α
κ

=
d
d

 is a fourth order tensor yet to be specified and d A  is given by, see 

equation (3-117): 
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Combining equations (3-131) and (3-132) gives: 
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with the second order tensor U: 

U h E P E P

h E H P E P

y y y

y y y

= −








 +











 +

−








 − −













1 1

1 1

1

0

ξσ
κ

σ
α κ

ξσ
ψ σ

ξσ
κ

σ
α κ

ξσ
ψ σ

∆ ∆

∆ ∆

: : : : :

:( ): : : :

 

(3-
134) 

The expression for dκ  as a function of dε  is defined by the consistency condition: 
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This gives, together with equation (3-133), an expression for dκ : 
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Finally, substituting equation (3-136) in equation (3-133) yields the consistent stiffness tensor 
for elastoplastic material behavior: 
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3.5.1.1 Example: consistent stiffness tensor for Euler backward integration 
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As mentioned, the interpolation tensor α equals the unit tensor for Euler backward 
integration. Hence, with equation (3-128) the second order tensor U  holds, see equation (3-
134): 
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y y
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yielding the consistent stiffness tensor for Euler backward integration: 
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Note that equation (3-139) differs from the stiffness tensor based on the continuum relations. 
Only for ∆κ = 0 are both tensors equal. 
 
3.5.2  Rigid plastic consistent stiffness tensor 

 
In order to obtain the consistent stiffness tensor for rigid plastic material behavior, 

equation (3-114) must be written in differential form: 
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Using the hardening modulus h one can write: 
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Determine an expression for dκ as a function of dε :  
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Combining equations (3-141) and (3-142) gives: 
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and with equation (3-114) the consistent stiffness tensor for rigid plastic material behavior is 
found: 
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3.6 Mixed elastoplastic / rigid plastic material model 
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The purpose of the mixed elastoplastic / rigid plastic material model is to combine the 
accuracy of the elastoplastic material model and the robustness of the rigid plastic material 
model over a large range of strain increments. The starting point of the mixed material model 
is equation (3-112). The value of the interpolation tensor α is not fixed beforehand, but 
depends on the equivalent plastic strain increment ∆κ [Huétink, 1999], [Meinders, 1999]. It is 
expected that for large strain increments the conditions at the start of the incremental step do 
not affect the calculated stress state at the end of the step significantly. Therefore, in the 
mixed material model, it is demanded that the influence of the initial stress σ0 vanish for large 
strain increments:  
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which gives a definition for the interpolation tensor α : 
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A reference strain increment κref is introduced which corresponds to an elastic stress 
increment from zero to the current yield stress. The following holds for κref : 

∆
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Note that for ∆κ κ≤ ref , Euler forward integration is used for the stress update. 
Also, the stress state yields, equation (3-112): 
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For ∆κ κ> ref the stress state yields, equation (3-112): 
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Note that for ∆κ > κref the elastoplastic material description degenerates to the rigid plastic 
material description, see equation (3-114). 
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3.6.1 Determination of reference strain increment κref 
 

To preserve continuity in the mixed elastoplastic / rigid plastic material model, both 
equations (3-148) and (3-149) must join each other in case ∆κ = κref. This means that σ0 in 
equation (3-148) must vanish for ∆κ = κref, and hence an expression is found for κref: 

H E P P Eref

y
ref y−









 = ⇒ = − −κ
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However, the expression found for κref is not suitable since it must be a scalar value and in 
equation (3-150) κref is defined as being a fourth order tensor. Therefore, another expression 
must be found for κref. Assume an incremental strain state ∆εref with an accompanying 
equivalent plastic strain κref. In order to obtain an expression for κref, a weaker restriction is 
applied, i.e. it is only demanded that the accompanying stress state for ∆εref must lie on the 
yield surface, see equation (3-151). This means that the yield stress corresponding with the 
stress state calculated from the elastoplastic part of the formulation, must equal the yield 
stress corresponding with the stress state calculated from the rigid plastic part of the 
formulation. Consequently the directions of both stress states do not have to coincide for the 
Hill yield criterion, this in contrast to the formulation for Von Mises yielding where it is 
demanded that both the yield stress and the direction of the stress state coincide for κref 
[Huétink, 1999]. 

φ σ σ ξσ ε ε ξσ= − = − =: : : : : :P E P Ey ref ref y∆ ∆ 0  (3-
151) 

Substituting equation (3-114) in the above equation gives the scalar expression for κref: 
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κref can be calculated if σ is chosen as the stress state at the start of each iteration. 
However, κref cannot be calculated if the initial stress state equals zero. In this special case, 

κref is calculated assuming Von Mises yielding. In matrix form, the symmetric elasticity 
tensor E and the Hill tensor P are, in the case of Von Mises yielding: 
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where G is the shear modulus and ν is Poisson’s ratio. After some manipulation, the 
expression σ σ: : : : : :P E P E P  can be written as: 
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The expression σ σ: :P  holds: 
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Combining equations (3-154), (3-155) and (3-100) yields: 
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Now, κref can be calculated when the initial stress state is zero: 
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3.6.2 Stress update algorithm 
 

The stress update algorithm for the elastoplastic part of the mixed material model is based 
on Euler forward integration. Subsequently, when the interpolation tensor α equals zero, the 
plastic strain can be written as, see equation (3-108): 

∆ ∆ε εp p t= &0  (3-
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The stress state reads: 
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The equivalent plastic strain increment ∆κ must be determined to calculate the new stress 
state. Since α = 0, equations (3-117), (3-121) and (3-123) become: 
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The expression for (dφ / dκ) yields, in the case of Euler forward integration (see equation (3-
122)): 
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Hence, the equivalent plastic strain increment ∆κ can be determined according to equation (3-
124). 
 
3.6.3 Consistent stiffness tensor 
 

The consistent stiffness tensor has to be derived for both parts of the mixed material 
model. Firstly, the consistent stiffness tensor for Euler forward integration is derived. Since 
the interpolation tensor α = 0, equation (3-134) degenerates to: 
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With equations (3-160) and (3-162), the consistent stiffness tensor for Euler forward 
integration becomes, see equation (3-137): 
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 Secondly, the consistent stiffness tensor is derived for the rigid plastic part of the mixed 
material model (∆κ > κref). With equation (3-147), the fourth order tensors A (equation (3-
117)) and ψ (equation (3-121)) can be written as: 
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The second order tensor U can be simplified to, see equation (3-134): 
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With equations (3-164) and (3-165) the consistent stiffness tensor for the second part of the 
mixed material model can be derived, using equation (3-137): 
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Comparing this consistent stiffness tensor with equation (3-144) it is obvious that the second 
part of the mixed material model equals the rigid plastic material model.  
 
3.7 Degenerated case: initial condition is elastic 
 

The formulation for the mixed elastoplastic / rigid plastic material model as given in 
Section 3.6 applies only when the initial stress state is on the yield surface. When the stress 
state is not a part of the yield surface, the mixed material model must be modified in order to 
account for these situations. A distinction is made between two situations: 

1. The stress state σ0 is elastic; the final stress state σn stays elastic 
2. The stress state σ0 is elastic; the final stress state σn becomes plastic 

In the first situation the stress state at the end of the step stays elastic, the consistent stiffness 
tensor equals the elastic stiffness tensor and the final stress state σn equals the trial stress state 
σt. The second situation requires a more complex treatment. In the case of an initial elastic 
situation and a final plastic situation, the intersection point with the yield surface has to be 
calculated first. The algorithms presented in Section 3.6 will act on the remaining strain 
increment outside the yield surface. In this section two different ways to map the initial elastic 
stress state onto the yield surface are treated, both illustrated in Figure 3-6. 

 
Figure 3-6. Initial elastic condition 
 

In the first case, represented by $σ 0 , the initial stress state σ0 is scaled to the yield surface 
while keeping the same direction. In the second case, represented by ~σ 0 , the initial stress 
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state σ0 is mapped onto the yield surface in the direction of the elastically predicted stress 
increment. The ~σ 0 -method is favored to determine the final stress state σ1 since it is expected 
to represent more closely the direction of the plastic strain at the end of the step, see equation 
(3-167).   

σ σ κ
ξσ

σ1 0= −t
y

E P∆ : : ~  (3-
167) 

The mapping of the stress state σ0 onto the stress state ~σ 0 is done as follows. The strain 
increment is decomposed in an elastic part and a plastic part: 
∆ ∆ ∆ε γ ε γ ε= + −( )1  (3-

168) 

in which the scalar γ indicates the elastic part of the strain increment. The new initial stress 
state can now be written as: 
~ :σ σ γ ε0 0= + E ∆  (3-

169) 

The value of γ is calculated using the yield function description: 
~ : : ~σ σ ξσ0 0

2P y=  (3-
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Replacing ~σ 0 with expression (3-169) yields: 
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and hence: 
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The positive value of γ, γ1, gives a ~σ 0 which lies between the initial stress state σ0 and the 
trial stress state σt; the negative value of γ , γ2, yields a ~σ 0 at the opposite of the yield surface, 
see Figure 3-6. The new initial stress state ~σ 0 is calculated with γ1. 
 
3.7.1 Consistent stiffness tensor 
 

Since the new initial stress state ~σ 0 depends on the predicted strain rate, it will contribute 
to the consistent stiffness tensor and hence a different expression for the consistent stiffness 
tensor has to be derived in case the stress state jumps from the elastic state to the plastic state. 
The starting point of the consistent stiffness derivation is equation (3-148): 

σ σ ε κ
ξσ

σ1 0 0= + −E E P
y

: : : ~∆
∆  (3-

173) 

With equation (3-169) the above equation reads in differential form: 
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For a neat consistent stiffness tensor also the derivative of γ must be taken into account. The 
expression for γ can be rewritten as follows, see equation (3-172): 
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The derivative of γ reads: 
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or after rearranging: 
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The derivative of the stress-strain relation is obtained by substitution of equation (3-177) into 
equation (3-174): 
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where: 
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An expression for dκ  as a function of dε  can be derived from the derivative of the yield 
function, see equation (3-135): 
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Combining equations (3-178) and (3-167) gives the neat consistent stiffness tensor for Euler 
forward integration for when the stress state jumps from the elastic state to the plastic state. In 
this formulation, the strain dependence of the scalar γ is taken into account: 
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3.8 Applications 
 

After the previous theoretical consideration, the performance of the mixed elastoplastic / 
rigid plastic material model will be investigated for two academic problems and a realistic 
problem. The mixed material model is applied in two configurations. The first configuration 
makes use of the consistent stiffness tensor (see Sections 3.6.3 and 3.7.1). The second 
configuration makes direct use of the expression for the new stress state (equation (3-148) for 
the elastoplastic part and equation (3-149) for the rigid plastic part), from now on called the 
direct approach. For the elastoplastic part of the latter configuration, the stiffness tensor will 
be the elasticity tensor and the term with the old stress state will be taken into account at the 
right-hand side of the finite element equations.  

The results obtained with the mixed material model are compared with the results obtained 
with a consistent Euler backward elastoplastic material model and a rigid plastic material 
model. 
 
3.8.1 One-element test 
 

The one-element test is performed to investigate the convergence behavior of the mixed 
elastoplastic / rigid plastic material model compared to the other material models. A 3-node 
triangular element was used in this test. 

 
Figure 3-7. One-element test 

One node is suppressed in both the x- and y-directions, a second node is only suppressed in 
the x-direction and the third node is pulled in the x-direction. Simulations with two different 
magnitudes of the displacement increments were performed, i.e. a displacement increment of 
0.001 mm to test the elastoplastic part of the mixed material model, and a displacement 



                                                                                                                                    Contents 55

increment of 0.01 mm to test the rigid plastic part of the mixed material model. The 
mechanical unbalance criterion was set at 10-14. 

After 30 steps, prescribing a displacement increment of 0.001 mm, the elastoplastic 
material model gave a yield stress of 304.3 MPa and a plastic thickness strain of -0.0140 for 
isotropic material behavior, and in each step quadratic convergence was observed. The mixed 
elastoplastic / rigid plastic material model gave the same results as the elastoplastic material 
model for both the consistent and the direct approaches. However the consistent algorithm 
showed quadratic convergence while the direct algorithm showed slower convergence, as 
expected. For anisotropic material behavior (R0 = 1.85, R45 = 1.52, R90 = 2.37) the 
elastoplastic material model gave a yield stress of 301.3 MPa and a plastic thickness strain of 
-0.00989, and in each step quadratic convergence was observed. Again the mixed 
elastoplastic / rigid plastic material model gave the same results as the elastoplastic material 
model for both the consistent (quadratic convergence) and the direct (slower convergence) 
approaches. 

After 30 steps, prescribing a displacement increment of 0.01 mm, the rigid plastic material 
model gave a yield stress of 448.2 MPa and a plastic thickness strain of -0.132 for isotropic 
material behavior and a yield stress of 440.9 MPa and a plastic thickness strain of -0.0925 for 
anisotropic material behavior (R0 = 1.85, R45 = 1.52, R90 = 2.37). Convergence was reached in 
1 iteration per step. The mixed elastoplastic / rigid plastic material model gave the same 
simulation results while for both the consistent and the direct approaches, convergence was 
reached in 1 iteration also.      
 From the one-element test it can be concluded that, depending on the displacement 
increment, the mixed elastoplastic / rigid plastic material model shows the same performance 
as the elastoplastic material model or the rigid plastic material model and that consistency, 
when applied, is proven by quadratic convergence.  
 
3.8.2 Tensile test 
  
 In order to preserve quadratic convergence the stiffness tensor must be consistent with the 
integration algorithm and changes of geometry. However, the mixed elastoplastic / rigid 
plastic material model is not set up consistently with respect to changes in geometry due to 
the complexity involved in taking into account the differential form of the B-tensor. As a 
result, quadratic convergence will not be observed when the geometry changes during the 
computation, which will be shown with the help of the tensile test. To model this test, 20 
triangular elements were used, see Figure 3-8. The nodes at the lower side of the strip are 
suppressed in the y-direction, representing the center line. The nodes at the left side of the 
strip are suppressed in the x-direction and the nodes at the right side of the strip are pulled in 
the x-direction.   

 

Figure 3-8. Finite element mesh of the tensile test 

 The performance of the mixed material model was compared with the elastoplastic model 
and the rigid plastic model during 100 incremental steps. Again the step size was varied to 
validate the elastoplastic part and the rigid plastic part of the mixed material model and 
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simulations were performed for both isotropic and anisotropic material behavior. The 
mechanical unbalance criterion was set at 10-14.  
 The elastoplastic material model and the consistent elastoplastic part of the mixed material 
model gave the same simulation results after 100 steps and showed quadratic convergence per 
step, whereas convergence was reached after 3 iterations. The direct approach of the mixed 
material model also showed the same simulation results, however, convergence was linearly 
reached after 10 iterations. Also the rigid plastic material model and the rigid plastic part of 
the mixed material model for both the consistent and direct approaches gave the same results 
after 100 steps while convergence was reached in 1 iteration. 
 Another simulation was performed in which the mixed material model switched from the 
rigid plastic state to the elastoplastic state and vice versa during the simulation. The 
convergence behavior of this simulation equaled the convergence behavior of the separate 
parts of the model as described above. 
 In the previous set of simulations the deformation pattern was uniform and no necking 
occured. To enforce necking and thus to enforce changes in geometry, a small imperfection of 
1% of the strip width at the left-hand side of the strip was introduced, see the dashed line in 
Figure 3-8. The first few steps of the simulation were fully elastic in the case of the 
elastoplastic material model. Since linear elasticity was assumed, convergence should have 
been reached in 1 iteration. However 3 or 4 iterations were necessary to reach the unbalance 
criterion of 10-14, caused by the non-consistent approach of geometrical non-linearity during 
the iterative procedure. In the subsequent steps the material starts to deform plastically and 
hence almost quadratic convergence was observed (7 iterations per step) using the 
elastoplastic material model and the consistent elastoplastic part of the mixed material model. 
Again, quadratic convergence was not observed due to geometrical non-linearity. In the case 
of the direct approach, the elastoplastic part of the mixed material model needed about 900 
iterations per step to reach convergence which was a consequence of using the elasticity 
tensor as the stiffness tensor. 
 
3.8.3 Rectangular product 
 

The deep drawing of a rectangular product was used to compare the behavior of the mixed 
elastoplastic / rigid plastic material model with that of the elastoplastic material model and the 
rigid plastic material model in a simulation of a realistic problem. The geometry of the 
rectangular tools and the blank are given in Figure 3-9. The product depth was 75 mm and the 
blank thickness was 0.7 mm. 

 
Figure 3-9. Tool geometry 

 A first set of simulations was performed with an incremental step size of 0.2 mm where the 
three material models were applied separately. The material behavior was assumed to be 
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isotropic, the mechanical unbalance was set at 0.02. The plastic thickness strain distribution in 
the rectangular product after 75 mm deep drawing is depicted in Figure 3-10 for the three 
material models used. 
 It is observed that the thickness strain distribution calculated with the mixed elastoplastic / 
rigid plastic material model inclines towards the results calculated with the elastoplastic 
material model whereas the results of the rigid plastic material model differ drastically from 
the results obtained with the other material models. The plastic thickness strain in the case of 
the rigid plastic material model is higher than the plastic thickness strain in the elastoplastic 
and the mixed material models. This can be explained as follows. The denominator of the 
rigid plastic formulation (see equation (3-114)) consists of the equivalent plastic strain 
increment. Problems arise when no plastic strain occurs in some parts of the product during 
the deep drawing simulation, the so-called dead metal zones. To avoid division by zero in the 
rigid plastic formulation, a small amount of fictive strain is assumed when no plastic strain 
occurs. The effect of this fictive strain on the deep drawing simulation would be very small if 
it is set to a very small value. However, when the value of the fictive strain is set too small, 
the stress is forced to the yield surface, even if in reality the situation should be elastic. This 
will lead to bad convergence and locally incorrect results. Therefore, the fictive strain is set to 
a value that represents the strain increment causing the stress state from zero to the yield 
surface. In this case the rigid plastic material model degenerates to a viscous model for small 
strain increments. Consequently, the plastic strain will be considerably overestimated in the 
dead metal zones, such as the bottom of the product and in some parts of the flange, when the 
rigid plastic formulation is used. 
 The simulation with the mixed elastoplastic / rigid plastic material model was performed 
using the direct approach. Simulations using the consistent approach did not converge after a 
few steps. The reason for not converging is that for an integration point, the state of the mixed 
material model can change from elastoplastic to rigid plastic (or reverse) during the iteration 
process. Since it was only required that the stress state of both parts of the model had to be on 
the yield surface for the case in which the incremental plastic strain ∆κ equals the reference 
strain κref, it is not demanded that the direction of the stress state of both parts must be equal. 
This difference between the directions of the stress states, determined with both parts of the 
mixed material model, yields a non-converging process. 
 

A second set of simulations was performed in which the material behavior was assumed to 
be anisotropic (R0 = 1.85, R45 = 1.52, R90 = 2.37). The mechanical unbalance was set at 0.02 
and the incremental step size was 0.4 mm. The thickness strain distribution in the rectangular 
product after 75 mm deep drawing is shown in Figure 3-11 for the elastoplastic material 
model, the mixed material model and the rigid plastic material model. Again, the simulation 
results obtained with the mixed elastoplastic / rigid plastic material model incline towards the 
elastoplastic material model. The reason for the divergent values obtained with the rigid 
plastic material model has already been described in this section concerning isotropic material 
behavior. 

Finally, the robustness of both the elastoplastic material model and the mixed elastoplastic 
/ rigid plastic material model were compared. For this purpose the incremental step size was 
increased until the simulation no longer converged, starting with a step size of 0.1 mm with 
an interval of 0.1 mm. For the elastoplastic material model the maximum step size reached 
was 0.5 mm. For the mixed material model the maximum step size reached was 0.8 mm. From 
this it can be concluded that the mixed material model is more stable than the elastoplastic 
material model. However, the convergence behavior of the mixed material model is worse 
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than the elastoplastic material model since the consistent formulation of the mixed material 
model cannot be used for deep drawing simulations.  

 
Figure 3-10. Plastic thickness strain distribution in the rectangular product for isotropic 
material behavior 
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Figure 3-11. Plastic thickness strain distribution in the rectangular product for anisotropic 
material behavior 
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3.9 Discussion 
 
 The advantage of the rigid plastic material model is its robust behavior and fast 
computation time. However, the model is not capable of accurately describing the 
deformation behavior in dead metal zones. The plastic strain is considerably overestimated in 
these zones, hereby affecting the deformation behavior of the entire product. The rigid plastic 
material model is, however, perfectly suitable for highlighting deformation trends. For an 
accurate computation, the elastoplastic material model or the mixed elastoplastic / rigid 
plastic material model must be used despite the increase in computation time.     
 The stiffness tensor derived is consistent with the integration algorithm for the mixed 
elastoplastic / rigid plastic material model. Quadratic convergence is observed for the 
academic problems as described in the former section, even if the state of mixed material 
model switches from elastoplastic plastic to rigid plastic during the simulation. Since the 
academic problems have a 1-dimensional character, the direction of the stress state for both 
parts of the model is almost equal in case that ∆κ = κref. However, the consistent approach 
fails in realistic problems such as deep drawing where the deformation pattern has a 3-
dimensional character. Consequently, at the reference strain, the direction of the stress state 
determined by both parts of the model are not equal, yielding a non-converging process. 
Therefore the direct approach of the mixed material model must be used in this type of 
problem.  

The direct approach of mixed material model is more robust than the elastoplastic material 
model but it needs more iterations per step to converge. As a consequence, a simulation with 
large incremental steps using the mixed material model will be as fast as a simulation with 
smaller incremental steps using the elastoplastic material model. Since a simulation becomes 
more accurate at smaller incremental steps, generally the elastoplastic material model is 
preferred to the mixed material model. Only for critical product simulations which can be run 
overnight, is the mixed material model to be favored to increase the chance of a converging 
simulation. 
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4.  Equivalent drawbead model 
 
 
 
4.1 Introduction 
 

The quality of a sheet metal stamping part is secured by the material flow into the die 
cavity. Therefore it is important to control the material flow rate to avoid defects like 
wrinkling and tearing. Furthermore, in car body manufacturing it is important that outer 
panels should be subjected to sufficient straining because of the flex resistance. Generally, the 
material flow is controlled by the blankholder: a restraining force is created by friction 
between the tools and the blank. However, during the forming stage, the blankholder does not 
make contact with the entire blank which means that it cannot fully control the material flow. 
Moreover, when a high restraining force is required, a higher blankholder force must be 
applied which may cause excessive wear in the tools and galling in the blank [Xu, 1997]. 
Therefore, a local control mechanism is desired which restrains the material flow sufficiently 
at relatively low blankholder pressure. These demands can be fulfilled by drawbeads, which 
are protrusions on the die surface, see Figure 4-1. A drawbead consists of two components, 
the bead itself and a matching groove, the contra-bead. The drawbead creates a restraining 
force by cyclically bending and unbending the sheet as it traverses the drawbead, causing 
strain hardening and a change in the strain distribution with consequently thinning of the 
blank [Wouters, 1994], [Carleer, 1994], [Triantafyllidis, 1986], [Maker, 1987].   

 
Figure 4-1. Deep drawing process including drawbeads 

The performance of the drawbead, or drawbead-like protrusions such as stepbeads or 
endbeads (Figure 4-2), is mainly determined by the drawbead geometry. The radii of the 
drawbead and the clearance between the drawbead tools can be varied, but also the shape of 
the cross-section. The shape of the cross-section can be semicircular (w = 2R, see Figure 4-2), 
rectangular or non-symmetric, where each shape has its specific characteristics. When a semi-
circular drawbead geometry is used, the material is subjected to three bending and unbending 
sequences, whereas for the rectangular drawbead geometry, the material is subjected to four 
bending and unbending sequences. Therefore, the drawbead with a rectangular cross-section 
will lead to a higher restraining force provided that the bending radii are the same. Another 
characteristic of the rectangular drawbead is that it is relatively insensitive to lubrication. This 
is explained as follows. The blank does not follow the rectangular drawbead geometry at the 
top of the bead during forming, but creates a small cavity between the tool and the blank, see 
Figure 4-2 (left picture). This cavity is situated between the two radii of the bead and becomes 
a depot for the lubricant which is easily squeezed out of the contact areas due to this cavity.        
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Figure 4-2. Cross-section of a drawbead, stepbead and endbead 

To take into account the effects of the drawbead on the deep drawing process, the 
drawbead should be modeled properly in a finite element simulation to guarantee an accurate 
simulation. However, modeling the exact drawbead geometry requires a large number of 
elements due to the small radii of the drawbead. Evidently this large number of elements will 
increase the computation time for such finite element simulations drastically. An equivalent 
drawbead approach is therefore commonly adopted in finite element codes to overcome this 
problem of excessive computation time. The commonly used equivalent drawbead models 
represent the drawbead as an additional and constant drawbead restraining force [Haug, 
1991], [Kawka, 1994], [Taylor, 1993], [Stoughton, 1988], whereas the model of Stoughton is 
used most widely. A more sophisticated model which accounts for the influence of the 
drawbead penetration depth on the drawbead restraining force is under construction 
[Mattiasson, 1999]. Consequently, the history of the drawbead restraining force as well as the 
changes in the strain distribution and thinning of the blank are not taken into account in these 
equivalent drawbead models, which results in inaccurate modeling of the drawbead behavior 
[Carleer, 1997], [Meinders, 1998b]. 

This chapter contains the description of an equivalent drawbead model which does 
incorporate the effects of sheet thinning and strain changes. Both the drawbead restraining 
force (DBRF) and the plastic thickness strain are considered to be history dependent. In this 
equivalent drawbead model the real drawbead is replaced by an artificial line on the tool 
surface on which a numerical algorithm acts. A discrete material element passing this line will 
experience a time dependent DBRF and a time dependent thickness strain. Simultaneously a 
drawbead lift force, which appears when material is pulled through the drawbead, is 
subtracted from the total blankholder force. The drawbead forces and strains can be obtained 
from experiments or from a 2D plane strain drawbead simulation, in which the real drawbead 
is accurately simulated. 

The 2D plane strain drawbead model is discussed in Section 4.2. Experiments performed to 
validate the performance of the 2D drawbead model, are also presented here. The 
implementation of the DBRF, the lift force and the plastic thickness strain in the equivalent 
drawbead model are discussed in Section 4.3. Two different algorithms have been developed 
to take into account the plastic thickness strain. One algorithm is based on a stress estimate 
and one algorithm is based on a penalty constraint method. In Section 4.4 the performance of 
the equivalent drawbead model in deep drawing simulations is investigated.   
 
4.2 2D plane strain drawbead model 
 
 A 2D plane strain drawbead model was developed to obtain accurate data concerning the 
drawbead forces and the thickness strain during the forming process. First, the reliability of 
the 2D drawbead model is proven. Subsequently the model is used to determine the process 
dependent drawbead forces and strains for all possible drawbead geometries. Note that the 
plane strain assumption holds for the straight part of the drawbead. The deformation patterns 
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of the blank in the vicinity of the drawbead ends are fully three dimensional and hence the 
plane strain model does not hold for these parts of the drawbead. 
 The 2D plane strain drawbead model makes use of the Arbitrary Lagrangian Eulerian 
(ALE) formulation [Huétink, 1986], [Huétink, 1990], [Helm, 1998]. This formulation is 
characterized by an uncoupling of the material and the grid displacements. The mesh can be 
deformed in a restricted way independently of the material flow: the mesh is fixed in the main 
flow direction, but it is free to deform perpendicular to this flow direction. The main 
advantages of this ALE-formulation are that the grid refinements remain at their initial 
position and that the effects of sheet thinning can be described as well. Since the grid is fixed 
in the flow direction, far less elements can be used than when an Updated Lagrangian 
formulation is applied, where refinements must be used on the complete sheet, since in the 
latter formulation the material and grid displacements are fully coupled.    

The finite element mesh of the 2D drawbead model is depicted in Figure 4-3. A pre-
deformed blank is used in the 2D drawbead model since the initial closing of the drawbead 
hardly affects the simulation results while taking up 25% of the computation time [Beugels, 
1993], [Brouwer, 1999]. The blank is modeled with 4-node bilinear plane strain elements. 
Contact between the sheet and the drawbead is described by contact elements [Huétink, 
1989]. An extra bend is added to the 2D drawbead model to obtain simulation results which 
can directly be compared with the experimental results.  

 

 
Figure 4-3. Finite element mesh of the 2D plane strain drawbead model. Coordinate distance 
‘s’ in the drawbead is given in [mm] 

 
 
4.2.1 Convection schemes 
 
 The ALE formulation can be divided into two steps. The first step is a usual Langrangian 
step, followed by a second step which is an explicit Eulerian step (purely convective). This 
method is known as the split ALE formulation.  
 After the Langrangian step, the integration point values must be mapped onto the mesh 
defined by the user (Eulerian step). The mapping can be established by constructing a 
function f based on the integration point data of the Lagrangian mesh [Helm, 1998]. A 
mathematical representation of this Eulerian step is given by the convection equation:   
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The convected quantity is denoted by f, the relative velocity between the material and the 
mesh is denoted by v. The mapping can be established by solving the above convection 
equation. In the literature various schemes can be found which deal with this problem. In this 
section three different schemes are compared, i.e. an isotropic scheme and an orthotropic 
scheme proposed by Huétink [Huétink, 1986], and a finite volume κ = 1/3-scheme [Stoker, 
1999].  

In brief, the different schemes work as follows. The schemes of Huétink are based on a 
central difference method applying node averaging combined with interpolation techniques to 
determine the new value of f. The central difference method leads to oscillation whereas the 
interpolation technique suffers from numerical diffusion. Both techniques are combined using 
a heuristic weight factor based on the incremental step size where the interpolation technique 
acts like a smoothing algorithm. Oscillations in the central difference method occur in the part 
of the algorithm where the gradient of the function f is multiplied by the incremental 
displacement vector. For the isotropic scheme the interpolation algorithm has the same 
numerical diffusion in all directions, consequently leading to numerical diffusion 
perpendicular to the flow direction. In the orthotropic scheme the interpolation part of the 
algorithm is replaced by a combination of interpolation and extrapolation techniques, where 
the Courant number depends on the direction. In the central difference method oscillations do 
not occur in the direction perpendicular to the flow direction. Therefore it is not necessary to 
apply smoothing in the direction perpendicular to the flow direction, and hence extrapolation 
techniques, which do not suffer from smoothing, are used to determine the value of f. More 
details of the orthotropic scheme can be found in [Wisselink, 2000]. 

The finite volume method is based on a balance of fluxes of the value f between the 
surrounding elements, which makes the method conservative. A method is said to be 
conservative if the integral of a state variable over the whole domain remains the same. The 
boundary integral is determined independently from the element from which it is considered. 
This results in an ingoing flux of one element being equal to the outgoing flux for another 
element. A cell-centered finite volume scheme based on integration point data is used which 
depends on a factor κ. For κ = 1 the scheme degenerates to an upwind scheme whereas for κ 
= 1/3 it is shown that the scheme is even third-order accurate for steady state situations 
[Stoker, 1999]. Special limiter functions must be used to prevent oscillations. 

The three different convection schemes are used in the 2D plane strain model for one 
specific drawbead geometry to compare the performance of each scheme [Brouwer, 1999]. 
The DBRF needed to pull the sheet through the drawbead is given in Figure 4-4 as a function 
of the material displacement. Both the isotropic and the orthotropic convection scheme reach 
their steady state value, whereas the κ=1/3 scheme does not converge to a steady state value. 
However, the DBRF and the plastic thickness strain both reach their steady state value when a 
material particle has been pulled through the entire drawbead [Cao, 1993]. Also, some 
oscillations can be observed in the κ=1/3 scheme. 
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Figure 4-4. Drawbead restraining force as a function of the material displacement 

 The equivalent plastic strain in the mid-plane of the blank is given in Figure 4-5 as a 
function of the material displacement. The three convection schemes show major differences 
in the calculated equivalent plastic strain.  

First the difference in graph shapes between the three convection schemes is examined. 
The isotropic scheme and the orthotropic scheme increase monotonously as expected, 
whereas the κ=1/3 scheme shows sections with a negative gradient. This was also observed 
by [Pelgrim, 1997]. From the definition of equivalent plastic strain, it is impossible to have 
negative gradients in the equivalent plastic strain graph. It can be concluded that despite the 
limiter used, oscillations still occur for the κ=1/3 scheme leading to non-realistic simulation 
results.   
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Figure 4-5. Equivalent plastic strain distribution in the mid-plane as a function of the material 
displacement 

 Second, the difference in steady state values of the three convection schemes is considered. 
These differences can be explained by plotting the equivalent plastic strain as a function of 
the position in the blank thickness direction, see Figure 4-6. The mid-plane of the blank is 
situated at 0.4 mm. The stress and strain distribution across the blank thickness must show a 
maximum value at the outer fibers and a minimum at the mid-plane of the blank. However, in 
the isotropic convection scheme numerical diffusion occurs in the direction perpendicular to 
the flow direction, yielding an increase of the plastic strain in the mid-plane and a decrease of 
the plastic strain at the outer fibers (dashed flat line). The difference in equivalent plastic 
strain graphs of Figure 4-6, obtained with the three convection schemes, shows this effect of 
numerical diffusion. The equivalent plastic strain curves, given in Figure 4-5, are recorded at 
a node lying in the mid-plane of the blank. Therefore, the orthotropic scheme and the κ=1/3 
scheme lead to a smaller equivalent plastic strain than the isotropic scheme. Since numerical 
diffusion in the perpendicular direction is restricted for the orthotropic and the κ=1/3 scheme, 
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they give a more accurate description of the equivalent plastic strain distribution over the 
thickness.  
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Figure 4-6. Equivalent plastic strain as a function of the position in blank thickness direction 

 The average equivalent plastic strain values for the orthotropic scheme and the κ=1/3 
scheme are also depicted in Figure 4-6. The equivalent plastic strain for the isotropic scheme, 
recorded at the mid-plane, is significantly lower than the average equivalent plastic strain of 
these schemes. Note that the 2D plane strain drawbead model will serve as an input for the 
equivalent drawbead model in which it is only possible to prescribe the plastic strain over the 
total blank thickness. Therefore the equivalent plastic strain, recorded at the mid-plane, is not 
a reliable representation of the total plastic strain in the blank. For these schemes, an 
improved representation of the equivalent plastic strain over the total blank thickness can be 
obtained by averaging the equivalent plastic strain distributions at different positions in the 
blank thickness direction. Figure 4-7 depicts these averaged equivalent plastic strain 
distributions for the orthotropic and the κ=1/3 scheme, together with the plastic strain 
distribution for the isotropic scheme. 
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Figure 4-7. Averaged equivalent plastic strain curves as a function of the material 
displacement 

 It is concluded that the orthotropic convection scheme shows the best performance for 2D 
drawbead simulations. It does not show any oscillations and gives a reliable prediction of the 
plastic strain distribution over the thickness due to the absence of significant numerical 
diffusion in the direction perpendicular to the flow direction. When used in the equivalent 
drawbead model, the equivalent plastic strain distribution must be averaged at different 
positions across the blank thickness.  
 
4.2.2 Analytical verification 
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 Analytical models to determine the DBRF can provide a first insight into the performance 
of the 2D plane strain drawbead model. In this section, the results of a simple analytical 
model and a more sophisticated analytical model are compared with the results of the 2D 
plane strain drawbead model.  
 
4.2.2.1 Simple analytical model 
 

As a first orientation, the numerical 2D plane strain drawbead model is compared with a 
simple analytical model which includes a number of simplifications [Meinders, 1999]. A 
moment M per millimeter width is needed to bend a strip with thickness t along a radius R, 
see Figure 4-8.  

 
Figure 4-8. Principle outline for calculation of the bending force 

Assuming a fully plastic moment and that the neutral plane coincides with the mid-plane, 
this moment can be written as: 

M ydyx

t

= ∫2
0

1
2

σ  
(4-
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The material is assumed to obey both the Ludwik-Nadai hardening law and the Von Mises 
yield criterion. Hence, the stress in the plane strain situation can be written as: 
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Substitution of equation (4-184) into (4-183) gives: 
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The force needed to bend the strip can be calculated by equating the internal and external 
work. The internal work yields: 
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where curvature κ =
+

1
1
2R t

 and strain ε κ= y . 

The external work is given by: 

W Fxext =  (4-
187)

The force per millimeter width can be calculated by equating equations (4-186) and (4-187): 
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To compare the 2D drawbead model with this simple analytical model, a specific 
drawbead geometry is chosen. The clearance is 0.7 mm which equals the blank thickness. The 
material model applied here is ideal plastic with a C-value of 149 MPa and a hardening 
exponent of 0.0, and friction is neglected. Within this drawbead with a semicircular cross-
section the material will be bent and sequentially unbent two times around a radius of 3 mm 
and once around a radius of 8 mm. When the sheet thinning is neglected, the total Drawbead 
Restraining Force (DBRF) will be:  

 

DBRFanalytical = 30.21 N/mm. 
 

The DBRF calculated with the 2D plane strain drawbead model amounts to: 
 

DBRFsimulation = 26.50 N/mm. 
 

Taking into account that the analytical solution is an upper bound criterion due to the 
incorporated simplifications, it can be concluded that the DBRF calculated with the 2D plane 
strain drawbead model is a reasonable prediction of the real DBRF.  
 
4.2.2.2 Stoughton model 
  

A frequently used and more sophisticated analytical model to determine the DBRF is 
proposed by Stoughton [Stoughton, 1988]. The Stoughton model is based on the virtual work 
principle and makes use of the effective material bending radius instead of the drawbead radii. 
In this model, the forces are derived by equating the work required to pull the sheet through 
the drawbead to the work required to bend and straighten the sheet and overcome the 
frictional forces in sliding over the bead radii. The DBRF results from the accumulation of 
bending and frictional forces from various regions of the drawbead. The material is assumed 
to obey the Holomon hardening law which incorporates strain rate sensitivity. This hardening 
law degenerates to the Ludwik-Nadai hardening law when strain rate effects are neglected.  

The analytical formulation of the DBRF is given by equation (4-189). For the derivation of 
this equation and its components, the reader is referred to [Stoughton, 1988].   

( )( )DBRF F e F F F e F F F e Fe e= + + + + + + +1 2 3
2

4 5 6
µθ µθ µθµ µ  (4-

189)

First, virgin material with a given initial thickness enters the drawbead from the right in 
Figure 4-9 and is bent along the first contra-bead radius R4, resulting in a bending force F1. 
Due to sliding over the contra-bead radius, this force is increased by a factor eµθ, where θ is 
the angle of contact between the sheet and the contra-bead radius and µ is the friction 
coefficient. Since the model accounts for initial elastic displacements due to the closing of the 
drawbead, an additional friction force due to this elastic displacement acts at the point of 
contact at the contra-bead entrance radius with size µFe/2. Here Fe is the elastic normal force. 
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The additional restraining force F2 to unbend the sheet at the contra-bead radius R4 is 
calculated, taking sheet thinning and strain changes into account due to the first bend. Then 
the sheet is re-bent in the opposite direction at the bead radius R2. Following this strategy for 
the entire drawbead yields the above analytical formulation for the DBRF. 

 
Figure 4-9. Drawbead geometry 

An identical strategy is used to derive an analytical formulation for the lift force. This 
force appears when material is pulled through the drawbead and its direction is opposite to the 
blankholder force.  
 The performance of the Stoughton model and the 2D plane strain drawbead model will be 
compared for three different drawbead geometries, see Table 4-1. The steady state values of 
the 2D plane strain drawbead model for the DBRF and the lift force are given in Table 4-2 
together with the analytical results. 
        

Geometry (mm) drawbead 1 drawbead 2 drawbead 3 
R1, R4 3  3 3 
R2 5 5 8 
H 8 5 12 
B1 13.6 13.6 20 
B2 10 10 16 
blank thickness 0.7  0.7 0.7 
clearance 0.7 0.7 0.9 

Table 4-1. Drawbead dimensions 

 Stoughton 
(N/mm) 

2D model 
(N/mm) 

difference 
(%) 

drawbead 1 DBRF 72.9 78.7 7.4 
 Lift force 60.9 72.9 16.5 
drawbead 2 DBRF 62.7 59.8 -4.9 
 Lift force 50.7 68.2 25.7 
drawbead 3 DBRF 69.7 82.7 15.7 
 Lift force 58.8 72.0 18.3 

Table 4-2. DBRF and lift force for Stoughton model and 2D drawbead model 

The DBRF for drawbead 1 and drawbead 2 compare very well, however a greater 
deviation between the calculated results is seen for drawbead 3. The explanation for this 
phenomenon lies in the way the material follows the drawbead geometry. For drawbead 1 and 
drawbead 2 the cavity between the contra-bead and the bead (B1-B2, see Figure 4-9) is 
narrow and the clearance between the tools equals the blank thickness. This means that the 
blank is forced to mainly follow the drawbead geometry, see Figure 4-10a. Note that for 
clarity only the mid-plane of the deformed blank is plotted. The analytical Stoughton model is 
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based on this type of deformation patterns and hence the agreement between the analytical 
results and the simulation results will be good. However, for drawbead 3, the cavity between 
the contra-bead and the bead is large and the clearance between the tools is larger than the 
blank thickness. As a result, the deformed blank shape will look like Figure 4-10b. The 
analytical Stoughton model is not able to deal accurately with this type of deformation 
pattern, which explains the larger deviation between the analytical DBRF and the DBRF 
obtained with the 2D drawbead model.      
 The difference in the calculated lift force is around 20% between both models for all 
drawbead geometries. Stoughton already observed a moderate difference between the 
analytically and the experimentally determined lift forces but did not explain this difference.    

 
Figure 4-10. Deformed blank shape in different drawbeads 

 
4.2.3 Experimental verification 
 

An experimental setup was designed and built to validate the performance of the 2D plane 
strain drawbead model. The experiments were performed at Hoogovens Steelworks on a fully 
equipped Erichsen press [Drent, 1993]. A principle outline of this experimental setup is given 
in Figure 4-11. A strip of sheet material is clamped between a blankholder and a die. The 
drawbead is situated in the blankholder - die region. The material is pulled through the 
drawbead by moving the punch into the die cavity.  

The experimental results and numerical results will be compared for drawbead 3, see Table 
4-1. The die shoulder radius R5 is 5 mm. The used sheet material has a C-value of 551 MPa, a 
hardening exponent of 0.23 and the yield stress is 149 MPa. The sheet metal is lubricated on 
both sides with a deep drawing oil with a viscosity of 0.04 Pa·s at 20 ºC. The surface 
roughness of the tools is about 25 µm. The punch speed is kept constant at 3 mm/s. The sheet 
width is set at 50 mm. The friction coefficient for the numerical simulation is set at 0.13 
according to the experiment. 

B1

B2

HR4
R3R2

R1

R5

Punch
force

Blankholder force

 
Figure 4-11. Experimental setup of the drawbead tester 
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The DBRF is recorded at the exit of the drawbead, see Figure 4-3. To avoid an enormous 
increase in the computation time, the punch rounding is not modeled in the 2D plane strain 
drawbead model, since it will not significantly affect the results. The calculated DBRF needed 
to pull the sheet through the drawbead is shown in Figure 4-12 as a function of the material 
displacement. The DBRF appears to be history dependent, its value is a function of the 
amount of material which has already passed the drawbead. The punch force is recorded 
during the course of the experiment and is also shown in Figure 4-12. The stationary value of 
the measured punch force is 106 N/mm which agrees well with the stationary value of the 
calculated DBRF. The large deviation between experiment and simulation for small 
displacements is a result of the difference between the experimental setup and the 2D 
drawbead model. During the experiment the sheet is initially flat and is bent around the die 
shoulder (R5, see Figure 4-11) when the punch moves downwards. This means that during the 
experiment the effective die bending radius will decrease from infinite (initial flat situation) 
to approximately the die shoulder radius (end of punch stroke), yielding a smooth increase of 
the bending force. However, in the 2D plane strain drawbead simulation the sheet is initially 
modeled along the die shoulder radius (see Figure 4-3), yielding a maximum bending force at 
the die shoulder radius when the simulation is started.      
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Figure 4-12. Drawbead restraining force as a function of the displacement 

The plastic thickness strain in the sheet is calculated comparing the initial thickness with 
the final thickness and is depicted in Figure 4-13 as a function of the coordinate distance ‘s’ 
in the drawbead, see Figure 4-3. The plastic thickness strain is also history dependent. Due to 
the plane strain assumption and the nearly incompressible material behavior the magnitude of 
the plastic thickness strain is almost equal to the magnitude of the tangential strain. The 
plastic thickness strain, derived from the measured thickness after drawbead processing and 
the initial thickness, is also given in Figure 4-13 as a function of the coordinate distance in the 
drawbead. The experimentally determined plastic thickness strain agrees well with the 
simulation result. 

Since the lift force was not recorded during the course of the experiment, the simulated lift 
force cannot be compared with the experimental data and is therefore not considered in this 
section. 

The good agreement between the experimental data and numerical simulations provides 
sufficient evidence for the reliability of the 2D plane strain drawbead model in predicting the 
DBRF and the plastic thickness strain. Comparisons of simulation and experimental results 
for other drawbead geometries also show good agreement [Carleer, 1997], [Pelgrim, 1997]. 
Having demonstrated the reliability of the 2D plane strain drawbead model, it can be used to 
accurately determine the process dependent drawbead forces and strains for all possible 
drawbead geometries. 
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Figure 4-13. Plastic thickness strain as a function of the coordinate distance 

 
4.2.4 Preparation of the results for the purpose of the equivalent drawbead model 
 

The results as generated with the 2D drawbead model need to be modified in order to be 
used as an input for the equivalent drawbead model because of the following two reasons. 
Firstly, the experiments were performed including a die shoulder radius R5, see Figure 4-11, 
since it was not possible to build an experimental setup without a die shoulder radius. 
However, the die radius R5 contributes to both the DBRF and the plastic thickness strain. The 
measured and simulated values should therefore be corrected for this additional contribution. 
This was done by performing a simulation in which the die shoulder radius was absent to 
generate the modified DBRF and the plastic thickness strain. 

Secondly, the plastic thickness strain as given in Figure 4-13 is represented as a function of 
the position along the drawbead in order to compare the simulation results with the 
experimental data. Since in deep drawing simulations the drawbead will be represented as a 
line in the equivalent drawbead model, the position in the drawbead is not known. Therefore 
the plastic thickness strain is also calculated as a function of the material displacement to 
serve as an input parameter for the equivalent drawbead.  

The modified results of the 2D plane strain drawbead model to be used in the equivalent 
drawbead model are given in Figure 4-14. 
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Figure 4-14. DBRF and plastic thickness strain obtained with the 2D drawbead model 

An almost flat plateau, situated between 15 mm and 25 mm displacement, can be 
distinguished in both graphs of the drawbead characteristics. This phenomenon can be 
explained with the help of Figure 4-3. At position A the material is bent with a certain 
curvature and, up to position A’, the sheet will follow the same curvature. Hence, the material 
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undergoes no additional bending deformation in the region between A and A’ which results in 
the almost flat plateau in the graphs. For this specific drawbead configuration the steady state 
is reached after 37 mm material displacement. The steady state value for the DBRF reads 83 
N/mm and for the plastic thickness strain -0.086.  
 
4.3 Equivalent drawbead model 
 

The purpose of an equivalent drawbead model is to replace the real drawbead to avoid a 
drastic increase in computation time for deep drawing simulations without significant loss of 
accuracy. Furthermore, the equivalent drawbead model has more advantages compared to the 
use of the real drawbead geometry. First, the equivalent drawbead is a flexible design tool. 
The effect of varying the position or geometry of the drawbead on the material flow can be 
studied very easily without the necessity to adapt the CAD drawings for a variation in the 
position or geometry of the real drawbead. Second, sheet metal forming processes are 
generally simulated with plate or shell elements for which a plane stress assumption is made. 
This assumption applies when the bending radii are large compared to the sheet thickness. 
However, the radii of a drawbead are usually very small and as a result the plane stress 
assumption is not valid when the material traverses the drawbead. In contrast, the equivalent 
drawbead model incorporates the results of the 2D plane strain drawbead model which are 
determined without the plane stress assumption. 

The equivalent drawbead model, represented as a line on the tool surface, is given in 
Figure 4-15. During the deep drawing simulation a finite element which passes the drawbead 
line will obtain an additional DBRF and a plastic thickness strain whilst the lift force is 
subtracted simultaneously from the total blankholder force. 

 
Figure 4-15. Schematic drawing of a 3-dimensional drawbead and its equivalent drawbead 
representation 

The material flow in the normal direction n only causes a DBRF and plastic thickness 
strain whilst the tangential component t makes no contribution, see Figure 4-15 [Carleer, 
1996]. This supports the approach to separate the total material flow into a normal and a 
tangential component. Consequently, only the normal component of the material flow will be 
taken into account for the equivalent drawbead model. The coordinate system for the 
equivalent drawbead model is also given in Figure 4-15, where xdb and ydb denote the 
directions normal and tangential to the drawbead, respectively. The ydb-axis is the plane strain 
direction of the 2D-drawbead analysis.  
 The input of the equivalent drawbead model consists of a drawbead restraining force, a 
plastic thickness strain and a lift force. The implementation of these drawbead characteristics 
in the equivalent drawbead model are treated separately in the following sections. Combining 
the derived expressions for the separate drawbead characteristics completes the equivalent 
drawbead model. The implementation of the lift force is described in Section 4.3.1, the 
implementation of the drawbead restraining force in Section 4.3.2. Two different 
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mathematical descriptions of the implementation of the plastic thickness strain are described 
in Section 4.3.3. The performance of both strain algorithms are compared in Section 4.3.4.    
 
4.3.1 Implementation of the lift force  
 

The direction of the lift force, which appears when the material is pulled through the 
drawbead, is opposite to the blankholder force direction.  This lift force causes a rise of the 
entire blankholder from which it can be concluded that the drawbead lift force is not a local 
phenomenon but will affect the total deep drawing process. The lift force is therefore 
subtracted from the total blankholder force during the deep drawing simulation. 
 
4.3.2 Implementation of the drawbead restraining force 
 

The drawbead restraining force appears on an element when this element passes the 
drawbead line. The direction of the DBRF is opposite to the material flow with the restriction 
that it acts perpendicular to the drawbead line. The DBRF is taken into account as an 
additional body force in the set of the finite element equations: 
K dbrf⋅ = − +∆u f r f0  (4-

190)

Here K is the stiffness matrix and ∆u is the incremental displacement vector. The vectors on 
the right-hand side, f and fdbrf, denote the force vector and the additional drawbead restraining 
force vector, respectively. The vector r0 is the initial reaction force.   
The force fdbrf is assigned to the element nodes which already passed the equivalent drawbead 
and equals the integral of the DBRF per unit width fdb over the width wi: 

fdbrf db
wi

f s= ∫ d  (4-
191)

where wi is the projected element side length on the equivalent drawbead line, see Figure 4-
16. 

 
Figure 4-16. Projected element side length wi 
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4.3.3 Implementation of the plastic thickness strain 
 

Two different algorithms were examined to implement the plastic thickness strain in the 
equivalent drawbead model. The first algorithm is based on a stress estimate, the second 
algorithm is based on a penalty constraint method. Note that in this chapter stresses and 
strains are regarded as invariant tensors, as introduced in Chapter 2. The asterisks, denoting 
the invariant form, will be dropped for convenience.  
 
4.3.3.1 Stress estimate 
 
 The first algorithm to implement the plastic thickness strain is based on the change in 
stress state because of the prescribed drawbead strain. An extra stiffness term is added to the 
left-hand side of the finite element equations at the element level, which appears as the 
drawbead stiffness matrix Kdb [Carleer, 1997], [Meinders, 1996]: 

( )K K db+ ⋅ = −∆u f r0  (4-
192)

The drawbead stiffness matrix can be written in terms of drawbead stresses and appears as an 
extra drawbead force vector in the right-hand side of the finite element equations: 

K dVt
db

V

⋅ = − + ∫∆ ∆u f r B0 : σ  (4-
193)

where ∆σdb is the incremental drawbead stress tensor to be estimated and Bt is a third order 
tensor containing the gradient of the shape functions. The drawbead stress ∆σdb has to be 
estimated to solve equation (4-193) and can be determined with the help of the incremental 
elastoplastic constitutive equation [Vreede, 1992]: 

( )∆ ∆σ εdb dbE Y= − −( ) :1 h   (4-
194)

where ∆εdb is the incremental drawbead strain tensor, E is the elasticity tensor, Y is the yield 
tensor and h is the hardening rate. Equation (4-194) can be solved when E, Y and h are known 
and when sufficient boundary conditions are incorporated. 
 
Boundary conditions 

Three assumptions are made with respect to boundary conditions. First, tangential to the 
equivalent drawbead, a plane strain condition is assumed, see Figure 4-17. Since a plane 
strain situation is assumed in the ydb-direction the material will only elongate in the xdb-
direction due to the prescribed drawbead strain. Second, the blank thickness is very small 
compared to the other blank dimensions, and therefore a plane stress state can be assumed. 
Third, the shear stress in the xdb-ydb plane is neglected, since only the direction of the material 
flow normal to the drawbead line contributes to the drawbead force and strain.  

Summarizing, the boundary conditions can be expressed as: 
∆

∆ ∆

∆ ∆ ∆

∆

ε

ε ε

σ σ σ

σ

db y

db z pr thick

db z db xz db yz

db xy

_

_ _

_ _ _

_

=

=

= = =

=

0

0

0

 

(4-
195)
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where ∆εpr_thick is the incremental prescribed plastic thickness strain. With these boundary 
conditions, equation (4-194) reduces to a system of three equations with two unknown stress 
components, ∆σdb_x and ∆σdb_y, and one unknown strain component, ∆εdb_x. 
 

 
Figure 4-17. Graphic representation of the plane strain condition 

 
Elasticity tensor 

When the stress tensor ∆σdb and the strain tensor ∆εdb are written as vectors, the tensor E 
can be written as a matrix. For isotropic material behavior the components of the elasticity 
matrix E are: 

E
G+

G+
G+

=
















2
2

2

λ λ λ
λ λ λ
λ λ λ

 
(4-

196)

where the shear modulus G and λ are the Lamé constants. The matrix is reduced to a 3*3 
matrix since it is assumed that no additional shearing will occur in the drawbead. 
 
Yield tensor 

The following expression for the yield tensor Y  with associated yielding holds: 

Y
E E

E
=

: :

: :

∂φ
∂σ

∂φ
∂σ

∂φ
∂σ

∂φ
∂σ

 
   

(4-
197)

where φ is the yield function. To determine the components of the yield tensor, the drawbead 
strains are assumed to be totally plastic. This is allowed since the elastic part of the drawbead 
strains is negligibly small. Because of the plastic incompressibility and the plane strain 
assumption in the ydb-direction, for small displacement increments the strain increments 
satisfy the linear relation: 
 ∆ ∆ε εdb x db z_ _= −  (4-

198)

The plastic deformation satisfies the normality flow rule according to Drucker. With this flow 
rule an expression for the stress derivatives of the flow criterion is found: 
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&
.

_ _
ε λ ∂φ

∂σ
∂φ

∂σ
∂φ

∂σ
p

db x db z
= ⇒ = −    

(4-
199)

where λ
.

 is the plastic multiplier and φ is the yield function. Writing the yield tensor Y as a 
matrix and using equation (4-199), the numerator of equation (4-197) can be written as: 

E: E∂φ
∂σ

∂φ
∂σ

: =
−

−
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0 0 0

0
 

(4-
200)

where: 

Ψ = ⋅








4 2
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db x

∂φ
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(4-

201)

Working out the denominator of the yield matrix yields: 

∂φ
∂σ

∂φ
∂σ

∂φ
∂σ

: :E G
db_x

= ⋅








4

2

 
(4-

202)

Using equations (4-200) and (4-202), an expression is found for the yield matrix Y in which 
the yield matrix only depends on the shear modulus G: 

Y
G -G

-G G
=

















0
0 0 0

0
 

(4-
203)

 
Hardening rate 

An expression for the hardening rate is defined, see equation (2-59): 

h f

f
=

−
∂φ
∂σ

∂φ
∂σ

: :E
 (4-

204)

where, for the Hill’48 yield criterion: 

f (R+ ) y
y= −4 1 2 2σ

∂σ
∂ε

 
(4-

205)

where R is the anisotropy parameter, σy is the yield stress and ε is the equivalent strain. The 
hardening rate is calculated using the stress state of the previous step.  

Using equations (4-196), (4-203) and (4-204) and the boundary conditions (2-1), the 
incremental elastic plastic constitutive equation can be solved with respect to the unknown 
drawbead stress and strain components. Substitution of the drawbead stress tensor into 
equation (4-193) completes the implementation of the drawbead thickness strain based on 
stress estimate.  
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4.3.3.2 Penalty constraint method 
 

The second algorithm to add an additional plastic thickness strain in the equivalent 
drawbead model is based on a penalty constraint method. An extra stiffness term Kcdb and an 
extra force vector fcdb  are therefore added to the finite element equations at the element level 
[Meinders, 1998a]: 

( )K Kcdb db+ ⋅ = − +∆u f r fc0  (4-
206)

The drawbead stiffness matrix Kcdb and the drawbead constraint force vector fcdb will be 
derived using a constraint method. As mentioned before, only the component of the material 
flow normal to the drawbead line will be taken into account for the equivalent drawbead 
model, see Figure 4-18. 

 
Figure 4-18. Element geometry configuration 

The constraint equations will be derived for the element depicted in Figure 4-18. The 
nodes and the element sides are numbered arbitrarily. The element side lengths projected on 
the normal of the drawbead line are represented by li. A set of constraint equations can be 
defined for this element: 
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−
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207)

The elongation of the element side ∆li is given by:  

∆
∆

l
l

mi
pr_thick i

init

=
⋅ε

 
(4-

208)

where ∆εpr_thick is the prescribed drawbead strain and li
init the perpendicular element side 

length in the first iteration. The variable m represents the number of steps required for the 
entire element to pass over the drawbead. The least squares method is applied to transform the 
constraint equation into a matrix form:  

( ) ( )A u q
u

A u q A A u A qT T⋅ − = ⇒ ⋅ − = ⇒ ⋅ =
2 2

0minimum ∂
∂

 (4-
209)

Multiplying the combination of equations (4-207) and (4-209) with a penalty factor k yields: 
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210)

The left-hand side of the above equation represents the symmetric drawbead stiffness matrix 
Kcdb, whereas the right-hand side represents the drawbead constraint force fcdb. In shorthand 
notation, equation (4-210) reads: 

Kcdb db⋅ =∆u fc  (4-
211)

The penalty factor k is necessary to create a drawbead stiffness matrix in which the 
components are of the same order of magnitude as the components in the element stiffness 
matrix. The penalty factor must be large enough to describe the drawbead behavior properly. 
However, it may not be too large since otherwise it will dominate the solution of the total 
system. Therefore, the value of the multiplier k is related to the largest value of the element 
stiffness matrix.  
 Convergence of the global weak equilibrium is generally not reached in one iteration. If 
the mechanical unbalance does not satisfy the required accuracy after the first iteration, the 
incremental displacement vector is recalculated in an iterative process until the desired 
accuracy has been reached. The drawbead stiffness matrix remains constant during this 
iteration process, but the right-hand side of the finite element equations at the element level 
changes to: 
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(4-
212)

where rn-1 is the reaction force vector from the previous iteration. The drawbead constraint 
forces during the iteration process are given by: 
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The prescribed elongation in the nth iteration is represented by ∆∆Li
n and depends on the 

elongation already obtained in the previous iterations ∆li
n-1: 

∆∆ ∆ ∆l l li
n

i i
n= − −1 (4-

214)

Note that the expressions derived for the drawbead stiffness matrix and the drawbead 
constraint force vector are defined in the local drawbead coordinate system. To add equation 
(4-211) to the finite element equations at the element level, the drawbead coordinate system 
has to be rotated towards the element coordinate system through a rotation matrix. Doing this 
completes the implementation of the drawbead thickness strain based on a penalty constraint 
method. 
 
4.3.4 Comparison between the two drawbead strain algorithms 
 
 A deep drawing simulation of a rectangular product was carried out to compare the 
drawbead strain algorithm based on a stress estimate and the algorithm based on a penalty 
constraint method. The setup for this simulation is described in Section 4.4. A drawbead with 
the geometry of drawbead 1 (see Table 4-1, Section 4.2.2.2) is placed on the long side of the 
product. The steady state value of the DBRF is 82.7 N/mm and the steady state value of the 
plastic thickness strain is -0.086. Three simulations were performed. In one simulation only 
the DBRF was prescribed, whilst in the other two simulations both the DBRF and the plastic 
thickness strain were prescribed, using the different drawbead strain algorithms. For all the 
simulations, the plastic thickness strain in the rectangular product is given in Figure 4-19 as a 
function of the coordinate distance along the y-axis. The equivalent drawbead line is situated 
at a coordinate distance of 197 mm.      
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Figure 4-19. Thickness strain distribution along the y-axis 

The result of the simulation in which the DBRF and the drawbead strain based on stress 
estimate are implemented, is almost identical to the result obtained with the simulation in 
which only the DBRF is prescribed. Consequently, it can be concluded that the 
implementation of the drawbead strain based on stress estimate hardly affects the plastic 
thickness strain distribution in the product. Implementing the drawbead strain based on the 
penalty constraint method does significantly affect the thickness strain distribution in the 
blank. The plastic thickness strain distribution under the punch (0 - 100 mm) is almost 
identical to the strain distribution when only a DBRF is prescribed. However, a clear 
difference in the thickness strain distribution between the two simulations can be seen in the 
material which has passed the equivalent drawbead. The maximum thickness strain reaches    
-0.075 at a coordinate distance of 170 mm. At a coordinate distance of 180 mm the difference 
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between the two simulations amounts to -0.073. The steady state value of the prescribed 
plastic thickness strain was -0.086. Hence it can be concluded that the plastic thickness strain 
in the material increases by almost the prescribed drawbead strain when the constraint 
algorithm is used in the equivalent drawbead model. Note that the increase in plastic 
thickness strain does not equal the prescribed plastic thickness strain due to the application of 
a penalty factor.  

The differences between the results obtained using the different strain algorithms can be 
explained as follows. The simulations were performed with a mechanical unbalance criterion 
of 0.01 with a maximum of 5 iterations per incremental step. Since the convergence behavior 
of the stress algorithm was very bad, the unbalance criterion was set at 0.05. This is the main 
reason for the differences in the simulation results using the stress algorithm and the 
constraint algorithm. To achieve an unbalance criterion of 0.01 in the simulation based on 
stress estimate, more than 75 iterations per incremental step were necessary, yielding a slight 
increase in the plastic thickness strain. Consequently, the drawbead strain algorithm based on 
stress estimate is not efficient for deep drawing simulations due to the bad convergence 
behavior. Therefore, the drawbead strain algorithm based on the penalty constraint method is 
used in the equivalent drawbead model. 
 
4.4 Applications 
 
 The equivalent drawbead model as described in Section 4.3 must be validated. For this, a 
numerical and an experimental verification were performed. The numerical verification 
consisted of a comparison between the simulation results of a strip test with an equivalent 
drawbead and a strip test in which the real drawbead geometry was modeled. The 
experimental verification consisted of a comparison between the simulation results and 
experimental data of the deep drawing of a rectangular product. Finally, the performance of 
the equivalent drawbead model was demonstrated by a deep drawing simulation of an 
automotive product.  
 
4.4.1 Numerical verification 
 

First, the performance of the equivalent drawbead model was verified by a strip drawing 
simulation. A simulation was performed in which the real drawbead geometry was modeled. 
In this simulation a fine mesh containing 1380 plate elements based on Mindlin theory was 
used [Carleer, 1997]. These elements can account for membrane-, bending-, and shear 
stresses. A simulation was performed in which the drawbead geometry was replaced by an 
equivalent drawbead model. For this simulation 600 plate elements based on Mindlin theory 
were used. A coarse mesh was used in the latter simulation since the real drawbead geometry 
was omitted. The finite element models of both simulations are shown in Figure 4-20. 

The plastic thickness strain of the two simulations as a function of the coordinate distance 
along the strip is compared in Figure 4-21. It can be seen that the maximum reduction in 
thickness compares well for the two simulations. Some deviation between the simulations can 
be observed at the right side of Figure 4-21, which can be explained as follows. The 
equivalent drawbead line is situated at a coordinate distance of 110 mm. Once the steady state 
value of the prescribed drawbead strain is reached as the material traverses the drawbead line, 
every new element which passes the drawbead will be subjected to this steady state value. An 
element which has not yet passed the drawbead line is not subjected to the prescribed 
drawbead strain. As a result the plastic thickness strain drops from the prescribed drawbead 
strain value to zero within the length of one element. However, in the simulation with the real 
drawbead geometry an element is subjected to a bending and unbending process as it 
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traverses the drawbead geometry. Hence, the developed plastic thickness strain in the element 
depends on the position within the drawbead. The real drawbead geometry is represented at 
the coordinate distance interval [110 - 140 mm]. This explains why in the real drawbead 
simulation the plastic thickness strain slightly decreases from its maximum value to zero at 
the coordinate distance interval [110 - 140 mm]. 

The small deviation between the two simulations at the left side of Figure 4-21 is due to 
the closing of the blankholder when the real drawbead geometry is modeled. The closing of 
the blankholder results in the development of some plastic strain in the drawbead region 
which slightly affects the strain distribution in the entire strip. 

 
Figure 4-20. Finite element models of a strip drawing simulation with an equivalent drawbead 
(A) and with a real drawbead (B) 
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Figure 4-21. Plastic thickness strain distribution along the strip 

 
4.4.2 Experimental verification 
 
 The equivalent drawbead model was also applied to the deep drawing simulation of a 
rectangular product using two different drawbead geometries. For verification the product 
was stamped to obtain experimental data. The dimensions of the two different drawbeads are 
listed in Table 4-1, drawbead 1 and drawbead 2 (Section 4.2.2.2), and the geometrical 
parameters are illustrated in Figure 4-9. The 2D plane strain drawbead model is used to 
determine the DBRF, the lift force and the plastic thickness strain of the two different 
drawbeads. The results obtained with the 2D drawbead model are given in Figure 4-22 for 
drawbead 1 and in Figure 4-23 for drawbead 2.  
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Figure 4-22. Drawbead 1 characteristics 
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Figure 4-23. Drawbead 2 characteristics 

The tool geometry for the rectangular product is given in Figure 4-24. The dimensions of 
the tools and the blank are listed in Table 4-3. Drawbeads with a length of 200 mm are placed 
in the die-blankholder region, both at a distance of 126.8 mm in the positive and negative y-
directions.  
 

Tool description dimension (mm)  Blank description dimension (mm) 
     
punch length 400  blank length 600 
punch width 200  blank width 470 
radius punch shoulder 20  blank thickness 0.7 
radius punch corner 20    
die length 403.6    
die width 203.6    
radius die shoulder 10    
radius die corner 20    
product depth 100    

Table 4-3. Tool and blank dimensions 
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Figure 4-24. Tool geometry of the rectangular product 

The blank is meshed with 4160 3-node triangular plate elements based on Mindlin theory 
with 5 integration points across the thickness. Contact between the sheet and the tools is 
described with contact elements in which a friction coefficient of 0.16 is assumed. The 
material behavior is assumed to be elastoplastic. 
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Figure 4-25. Flange shapes of rectangular product: drawbead 1 
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Figure 4-26. Flange shapes of rectangular product: drawbead 2 
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A set of simulations was performed for each of the two drawbead geometries to test the 
equivalent drawbead model. A set of simulations consists of a simulation without drawbeads 
and a simulation in which DBRF, the lift force and the plastic thickness strain are prescribed 
in the equivalent drawbead model. 

The flange shapes obtained by the deep drawing simulations of the rectangular product 
after a punch stroke of 100 mm are given in Figure 4-25 for drawbead 1 and in Figure 4-26 
for drawbead 2. The experimentally determined flange shapes for the rectangular products 
with different drawbeads are also shown in these figures. 

The discussion of the results obtained will focus on the differences between the simulation 
with and without the equivalent drawbead model. For the simulation with drawbead 1 it can 
be seen that the draw-in at the drawbead position (0-100 mm x-coordinate) is significantly 
less when an equivalent drawbead model is used, which was also expected. It is also observed 
that the draw-in at other parts in the product is higher when an equivalent drawbead model is 
used. Since the material flow is restrained in the drawbead region, the material will flow more 
easily out of other regions into the die cavity, resulting in a higher draw-in in these regions. 
Consequently, the tip of the blank is rotated due to the change in the material flow pattern. 
The simulation with drawbead 2 also shows this behavior, however, drawbead effects in the 
drawbead region are less obvious due to the lower prescribed drawbead characteristics, see 
Figure 4-23. 
The simulated flange shape, obtained with the equivalent drawbead model, compares very 
well with the experimentally determined flange shapes for the rectangular products with 
different drawbeads. It can be concluded that the equivalent drawbead model is a powerful 
tool to replace the real drawbead geometry in deep drawing simulations. 
 
4.4.3 Simulation of a fender 
 

Finally, a simulation was carried out to demonstrate the performance of the equivalent 
drawbead model in the deep drawing simulation of a real automotive product. The numerical 
tool description is given as an exploded view in Figure 4-28. The initial blank was a rectangle 
of 810 x 680 mm, with an initial thickness of 1.2 mm and made from aluminum. The final 
product depth was 118 mm. To avoid a long computational time, the blank was coarse 
meshed with 11016 3-node triangular elements based on membrane theory and the material 
behavior was assumed to be rigid plastic. 
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Figure 4-27. DBRF and plastic thickness strain for drawbead A and drawbead B 

The tool geometry of the fender comprised three drawbeads. The geometry of the 
drawbeads along the long side of the product were equal, drawbead A. The geometry of the 
drawbead along the short side of the product differed from the other drawbeads, drawbead B. 
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In the simulation, the three drawbeads were replaced by an equivalent drawbead model. The 
drawbead characteristics of both drawbead A and drawbead B were determined with the 2D 
plane strain drawbead model and are given in Figure 4-27.     

 
Figure 4-28. Tool description for the fender 

One simulation was performed in which the equivalent drawbead model was applied and 
one simulation was carried out without drawbeads. First the plastic thickness strain 
distribution in the fender is shown along cross-section AA’, see Figure 4-29, and cross-
section BB’, see Figure 4-30 (the definition of the cross-sections is given in Figure 4-28). 
These figures clearly show that the strain distribution in the entire product changes due to the 
applied drawbeads. Roughly, it can be concluded that the plastic thickness strain in the entire 
product is increased by -0.04 when the equivalent drawbead model is applied.    
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Figure 4-29. Plastic thickness strain distribution along cross-section AA’ 
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Figure 4-30. Plastic thickness strain distribution along cross-section BB’ 

The flange shape of the fender, determined with both simulations, is depicted in Figure 4-
31. This figure shows that the draw-in of the blank is decreased when the equivalent 
drawbead model is applied due to the prescribed restraining force and plastic thickness strain. 
The material displacement through the different drawbeads is small in this product. Along the 
short side of the product, the material displacement through the drawbead is maximally 20 
mm. Along the upper long side of the product, the material displacement through the 
drawbead is also maximally 20 mm and along the lower long side of the product this 
displacement is maximally 12 mm. Figure 4-27 shows that for these displacements, the steady 
state values of the DBRF and the plastic thickness strain are not reached for the two 
drawbeads. Therefore it is important to incorporate the DBRF and plastic thickness strain as 
history dependent rather than using the steady state value.  
 Finally, the plastic thickness strain distribution in the fender is given in Figure 4-32 for 
both simulations. It is concluded that the strain distribution in the entire product is 
significantly influenced when the equivalent drawbead model is applied.   
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Figure 4-31. Flange shapes of the fender 
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Figure 4-32. Plastic thickness strain distribution in the fender 

 
4.5 Concluding remarks 
 
 A 2D plane strain drawbead model was developed which gives reliable predictions of the 
drawbead restraining force (DBRF), the lift force and the plastic thickness strain for all 
different drawbead geometries. The results of the 2D plane strain drawbead model serve as an 
input for the equivalent drawbead model. The equivalent drawbead model developed here 
replaces the real drawbead geometry by a line on the tool surface on which a numerical 
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algorithm acts. This numerical algorithm incorporates the history dependent DBRF, the lift 
force and changes in the strain distribution. Two different strain algorithms have been 
developed to take the strain changes into account. The strain algorithm based on a penalty 
constraint method is preferred to the strain algorithm based on a stress estimate because of the 
better convergence behavior. Experiments were carried out to test the performance of the 
equivalent drawbead model. The good agreement between the experimental results and the 
simulation results shows that the equivalent drawbead model is a powerful tool to replace the 
real drawbead geometry in deep drawing simulations. 
 Note that the equivalent drawbead model is based on a plane strain assumption. If the 
drawbead is sufficiently long, the deformation pattern in the straight part of the drawbead can 
be assumed as plane strain. For this part of the drawbead, the real drawbead geometry can 
successfully be replaced by the equivalent drawbead model. However, the deformation 
pattern of the blank in the vicinity of the drawbead ends is fully three-dimensional and hence 
the plane strain assumption does not hold for these parts of the drawbead. Improper design of 
the drawbead ends can cause the sheet to wrinkle and this phenomenon cannot be taken into 
account in the equivalent drawbead model. 
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5.  Adaptive remeshing 
 
 
 
5.1 Introduction 
 

Zienkiewicz published his book entitled ‘The finite element method in structures and 
continuum mechanics’ in 1967. This book was the first to deal with the finite element method 
[Zienkiewicz, 1991]. At that time the power of a computer was considerably less than that 
available nowadays. Hence, the finite element computations had to be simple to obtain 
solutions in a reasonable time. From the late sixties onwards, the development of computer 
technology has increased drastically. Due to this increase in calculation capacity, finite 
element programs were developed to make more complex computations. Slowly the type of 
computation changed from academic test problems to practical problems. It became possible 
to use the finite element method for simulating complex production processes.  

Today, industries such as the automotive and aerospace industry require the solution of 
highly complex problems concerning three-dimensional geometries, non-linear material 
behavior, contact conditions and large deformations. Consequently, the numerical simulation 
of these types of problems is potentially very expensive, even when simplifying assumptions 
such as membrane kinematics are made. Despite the high computer power available, it is 
desired that a computation can be performed overnight. Hence, the computational costs 
(computation time, time to prepare the initial element mesh and the amount of data to store) 
must be minimized while still maintaining the desired accuracy. This goal can be achieved by 
adaptive remeshing; the initial finite element mesh can be changed in a specific way during 
the simulation. Adaptive remeshing has two major advantages. First, the computational costs 
can be reduced by starting the simulation with a relatively coarse mesh. Remeshing at specific 
parts in the mesh can take place when these coarse elements are no longer able to accurately 
describe the geometry or the steep gradients in state variables, and this is usually the case in 
the final stage of the forming process. Second, when large deformations develop, the initial 
mesh can be highly distorted, so that the numerical simulation becomes unstable or crashes. 
To prevent a high mesh distortion, adaptive remeshing can be applied to enhance the element 
mesh during simulation.        
 Globally, the adaptive remeshing procedure can be divided into three phases. First, some 
measure of the accuracy of the solution is required. This so-called error estimator will be used 
to define a remeshing criterion (Section 5.2). Next, a new mesh must be generated which must 
satisfy specific requirements (Section 5.3). Finally, a procedure for the transfer of state 
variables and boundary conditions from the old mesh to the new mesh is required (Section 
5.4). The performance of the adaptive remeshing procedure is demonstrated on the basis of 
several deep drawing simulations (Section 5.5). A preliminary study on the coupling of a 
wrinkling prediction model to the adaptive remeshing procedure is treated in Section 5.6. 
 
5.2 Remeshing criterion 
 

Remeshing must be performed when a specified error is exceeded. Huerta proposed two 
different approaches that can be used for assessing the error of the given mesh: error 
estimators and error indicators [Huerta, 1998]. Error estimators are based on optimality theory 
and are computationally expensive. Most error estimators are well defined for linear problems 
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but not, however, for non-linear problems. Error indicators instead are based on heuristic 
considerations, i.e. an existing quantity is chosen as an indicator.  

In the in-house finite element code DiekA two error indicators have been implemented. 
The first error indicator is based on the thickness error, the second error indicator is based on 
a geometrical error. These two estimators will be discussed briefly, for a detailed description 
the reader is referred to [Selman, 1999a]. 
 
5.2.1 Error indicator based on thickness error 
 

First an area weighted nodal averaging technique is used to determine the smooth 
thickness tn  at a given node: 
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where Ae is the area of the element, elemc is the number of elements connected to node n, 
ngaus is the number of gauss integration points per element, wgp is the weight function  and 
tgp the thickness at a gauss integration point. The function Lgp extrapolates integration point 
data to the nodes. The smooth thickness at a gauss point is calculated via the Gauss 
interpolation function Nn: 
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with nnode the number of nodes per element. Finally, the relative thickness error per element 
Πe

t  is calculated, using the actual integration point thickness and the smooth thickness: 
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where ξ and η are the natural coordinates and J is the Jacobian. An element needs to be 
refined when this thickness error exceeds a user-defined thickness error. 
 
 
 
 
5.2.2 Error indicator based on geometrical error 
 
 For each element an orthogonal coordinate reference system is determined that is unique 
and node number independent, represented by the covariant base vectors gi [Batoz, 1992]. For 
linear triangular elements this tangent set of axes is constant within the element. The variation 
of these tangent sets from one element to its neighboring elements indicates a variation of the 
geometry which cannot be represented by facet elements. Therefore, a nodal averaging 
technique is used to quantify the variation of the tangent sets of axes, see equation (5-218). In 
general, the smooth nodal base vectors are not orthogonal because of the applied averaging 
technique.    
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where gi n( ) are the smooth nodal base vectors, Ae the area of the element and elemc the 
number of elements connected to node n. The smooth metric tensor contains information 
concerning the lengths and the angles between the base vectors and is determined by the inner 
product of the base vectors, equation (5-219):   

gij n i n j n( ) ( ) ( )= ⋅g g  (5-
219)

The smooth metric tensor per element is an average of the nodal smooth metric tensor at the 
nodes belonging to that element (nnode), equation (5-220):  
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Given the metric tensor within an element corresponding to the actual mesh, gij, and the 
smooth metric tensor corresponding to a higher order surface, Bonet [Bonet, 1994] uses a 
Green-Lagrange like tensor S to define the geometrical error, equation (5-221). Here only the 
base vectors in the plane of the surface are taken into account since the third direction is 
defined as the normal of both in-plane vectors.  

( )S g gij ij ij= −1
2          i,j = 1,2 (5-

221)

 

Figure 5-1. Construction of smooth nodal base vector 

Note that the tensor S is not equal to the Green-Lagrange tensor E, which can be explained 
with the help of Figure 5-1. The Green Lagrange tensor E should estimate the strain tensor 
between the faceted geometry, defined by the elements, and the approximated smooth 
geometry, defined by the smooth nodal base vectors. In the situation as sketched in Figure 5-
1, stretching appears and thus the tensor E must have a positive value. However, due to the 
averaging technique that is used to determine the smooth nodal base vector, the length of this 
smooth vector will be smaller than the vectors from which it is created, yielding a negative 
value for equation (5-221). 
 

The contravariant components of S must be determined since the smooth nodal base 
vectors are not orthogonal due to the applied averaging technique:  
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S g g Sij ik jl
kl=  (5-

222)

Since the third base vector is defined as the normal of the two in-plane base vectors, the 
deformation in the third direction can be treated as one-dimensional [Jongschaap, 1994]: 
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where t is the thickness and t the smooth thickness. Considering volume conservation: 

t g t g=  (5-
224)

where g and g  are the determinants of the metric tensor and the smooth metric tensor. 
The deformation in the normal direction is obtained as follows: 
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The corresponding co- and contravariant components S33 and S33 are equal for the case in 
which the normal base vector is a unit vector.  

Hence, the geometrical error is defined as the second invariant ( )Πe
g 2

of S: 
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An element needs to be refined when this geometrical error exceeds a user-defined 
geometrical error. 
 
5.3 Mesh generation 
 
 The second phase of adaptive remeshing is the generation of a new mesh. The goal is to 
increase the richness of the interpolation at specific parts in the blank as defined by the 
remeshing criterion. Three different types of spatial discetization can be distinguished: r-
adaptivity, p-adaptivity and h-adaptivity [Djokovic, 1998], [Huerta, 1998]. Strategies based 
on r-adaptivity consist of keeping the number of spatial grid points fixed, but allowing them 
to move into regions where a finer spatial discretization is needed. This type of adaptation is 
particularly powerful on problems where a large domain is needed to capture a time varying 
solution which has steep slopes over only a small fraction of that domain [Drake, 1996]. 
Strategies based on p-adaptivity consist of changing the degree of the interpolating 
polynomials in appropriate regions of the mesh. This method is preferred for (linear) smooth 
solutions or over subregions where the solution is smooth [Li, 1996]. Strategies based on h-
adaptivity consist of adapting the number of grid points and changing the mesh connectivity. 
Grid points are added to areas where more accuracy is demanded (the interpolation will be 
enriched) and can be deleted in areas where the solution is accurate enough.  
 Before adaptive remeshing was applied in finite element computations of forming 
processes, each simulation was started with an initial mesh which had to be generated 
carefully. One had to estimate which part of the mesh would be located at areas with high 
curvatures or steep gradients of state variables. This part of the mesh then required a high 
density of grid points. The problem of complex mesh generation beforehand can be avoided 
by initially generating a uniform mesh in combination with the use of h-adaptivity during the 
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computation. In the remainder of this section the h-adaptivity strategy, implemented in the in-
house code DiekA, will be treated in detail.      
 
5.3.1 Refinement strategy 
 

The adaptive remeshing procedure, as described in this chapter, has been specially 
developed for sheet metal forming. Generally, the forming of details in a sheet metal product, 
which correlates with high geometric curvatures and steep gradients of state variables, takes 
place at the end of the production process. Consequently, starting the simulation with a 
sufficiently fine mesh, mesh refinement will be necessary at the final stage of the forming 
process to compute the solution in an accurate way. At present, derefinement techniques 
whereby nodes are removed as they cease to be necessary will not be considered. 

Simulations of sheet metal forming are performed with 3-node triangular elements. Two 
different approaches can be used to apply the h-adaptivity strategy to triangular elements, see 
Figure 5-2.  

 
Figure 5-2. Two h-adaptivity strategies for triangular elements 

In the first approach (A) the element to be refined (shaded), from now on called an 
inefficient element, is divided into 4 equal elements, as well as the neighboring elements of 
the inefficient element. The newly created nodes on the element sides of the neighboring 
elements, nk, must be constrained by the old nodes of that element side, ni and nj, to preserve 
mesh compatibility. Consequently, 16 new elements and 9 new nodes are created, from which 
only 3 nodes contribute to new degrees of freedom, i.e. the new nodes on the element sides of 
the inefficient element. 

In the second approach (B) the inefficient element is divided into 4 equal elements. The 
neighboring elements are divided into 2 elements, for reasons of conformity from now on 
called cleft elements. Consequently, 10 new elements and 3 new nodes are created, from 
which all new nodes contribute to new degrees of freedom. The advantage of this method is 
that the increase in richness of interpolation is reached by creating less new elements and 
nodes than in approach (A). A disadvantage of this method is that the aspect ratio of the 
neighboring elements is halved.   

The h-adaptivity method which will be used is an extension of approach (B). The 
inefficient element has three neighboring elements, from now on called 1st order neighbor 
elements. Both the inefficient element and the 1st order neighbor elements are divided into 4 
equal elements. Each 1st order neighbor element also has two neighboring elements, the 2nd 



                                                                                                                                    Contents 99

order neighbor elements, which will be divided into 2 elements, see Figure 5-3. In this way, 
28 new elements and 9 new nodes are created, from which all nodes contribute to new 
degrees of freedom. The advantage of this extended refinement approach is that it anticipates 
the further deformation process by refining both the inefficient element and the 1st order 
neighbor elements. In approach (B) it is most likely that when the inefficient element has to 
be refined in simulation step k, one of the 1st order neighbor elements will become an 
inefficient element itself at step k+j, and the refinement procedure must be restarted. Taking 
into consideration that the refinement procedure is time consuming, the extended refinement 
approach reduces the total time necessary for refinement in an entire simulation. 

 
Figure 5-3. H-adaptivity method used in the in-house code DiekA 

 
5.3.2 Degenerated cases 
 

Application of the refinement approach in a practical problem can give rise to difficulties, 
and these have to be solved to maintain a consistent refinement procedure. Some test 
simulations were performed to overcome the possible difficulties.  
 
2nd order neighbor surrounded by more than one 1st order neighbors 

In the first test case, elements 11 and 13 are set as inefficient elements, see Figure 5-4. 
Elements 4, 6 and 12 are 1st order neighbor elements and 5 is the 2nd order neighbor element. 
Following the refinement strategy as described in Section 5.3.1, elements 11, 13, 4, 6 and 12 
will each be divided into 4 equal elements. However, a difficulty occurs for element 5. 
Element 5 is a 2nd order neighbor which has to be divided into 2 elements. This is not allowed 
because there are already 2 new nodes created on the element sides of element 5 since this 
element is the 2nd order neighbor of two 1st order neighbor elements. Therefore it is proposed 
that in situations where a 2nd order neighbor element is surrounded by more than one 1st order 
neighbor element, this 2nd order neighbor is also divided into 4 equal elements.  
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Figure 5-4. 2nd order neighbor element surrounded by two 1st order neighbor elements 

  
Refinement of cleft elements  
 In the second test case element 1 is refined first, resulting in the element mesh given in 
Figure 5-5a. After refinement, each element is labeled with a value that denotes the number of 
refinements: the refine-level. Cleft elements keep the refine-level of the element from which 
they originate. In other words, elements 2, 3, 4, 9, 10, 11 and 24 have a refine-level of 0, 
elements 1, 21, 22 and 23 have a refine-level of 1.   
   

 
Figure 5-5. Refinement of a cleft element 

Next, element 2 is set as an inefficient element. From the previous refine phase, element 2 
is labeled as a cleft element. Following the refinement strategy of Section 5.3.1, elements 3, 
22 and 24 are the 1st order neighbors and elements 4 and 9 are 2nd order neighbors, see Figure 
5-5a. The result of this refinement procedure is given in Figure 5-5b. It can be seen that in the 
initial mesh only elements 2 and 24 have their aspect ratio halved. In the new mesh, elements 
2 and 24 are equally divided into 4 elements each, which results in 8 elements with a bad 
aspect ratio. 

A better quality mesh can be created when the cleft elements 2 and 24 are considered as a 
pair. Before the refinement procedure is started, the cleft elements 2 and 24 are joined, after 
which for the element combination 2-24 the 1st order neighbors are searched. It is checked 
that in order to qualify as a neighbor, an element must have the same refine-level as its 
neighbor, to preserve mesh compatibility. Consequently, the 1st order neighbors of element 
combination 2-24 are elements 3 and 9, the 2nd order neighbors are elements 4 and 10. 
Performing the refinement procedure yields a more uniform mesh with a minimum number of 
elements with bad aspect ratios, see Figure 5-5c. 
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Inefficient elements with different refine-levels 
 In the first phase of the adaptive remeshing, the error indicator used selects a list of 
inefficient elements. This list can contain elements with different refine-levels. Simultaneous 
refinement of the elements with a different refine-level gives rise to mesh incompatibility, see 
Figure 5-6. Elements 2 and 22 are the inefficient elements in this example. Mesh 
incompatibility occurs at the common element side of elements 2 and 22 in the initial 
configuration. To preserve mesh compatibility, the inefficient elements are subdivided into 
groups with the same refine-level. The refinement procedure will be carried out for each 
element group successively, starting with the group with the lowest refine-level. 
Consequently, in this example element 2 will be refined first, followed by the refinement of 
element 22, see Figure 5-6.         

 
Figure 5-6. Refinement procedure for inefficient elements with different refine-levels 

5.4 Data transfer 
 

The third phase of the adaptive remeshing procedure consists of the transfer of state 
variables from the old mesh to the new mesh (mapping). The process of mapping is visualized 
in Figure 5-7. The state variables of the old elements are mapped onto the new elements 
through interpolation functions.  

The integration point data of the old element is extrapolated to the old element nodes, 
equation (5-227) and Figure 5-7a: 

f L Fi ij j= ⋅  (5-
227)

where fi are the nodal values, Fj are the integration point values and Lij is a function that 
extrapolates the integration point data to the nodes. For a triangular element with three nodes 
and three integration points, Lij equals the inverse of the Gauss interpolation matrix Nij: 
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The nodal values of the new nodes are evaluated by simply averaging the nodal values of the 
old nodes which it is lying in-between, Figure 5-7b. One can choose to use the nodal values of 
the old nodes, based only on the integration point data of one element (first method), or use 
the average nodal value of the old nodes, based on the integration point data of all the 
elements connected to the old node (second method). The first method is implemented for 
elements with one integration point, the latter method is implemented for elements with 3 
integration points. After this, the new integration point data is determined by interpolating the 
nodal values of the new elements to the integration points, Figure 5-7c.  

 
Figure 5-7. Remapping 

 
5.5 Applications 
 

The performance of the refinement procedure as described in the previous sections, will be 
demonstrated on the basis of several deep drawing simulations. In the first section a square 
product is simulated with triangular 3-node membrane elements with one integration point. In 
the second section the same square product is simulated with triangular 3-node plate elements 
based on Kirchhoff theory [Batoz, 1980], [Carleer, 1997]. This element contains 3 integration 
points in its plane and 2 to 7 integration points across the thickness. The last section describes 
the deep drawing simulation of an automotive product. The material behavior is assumed to 
be rigid plastic to avoid large computational time. 
 
5.5.1 Square product simulation: membrane elements 
   

In this section the refinement procedure developed above will be applied to the deep 
drawing of a square product, using membrane elements. The punch size is 200 mm and its 
stroke length is 75 mm in the negative z-direction. The punch has a shoulder radius of 10 mm 
and a corner radius of 20 mm. The die has the same dimension as the punch, taking into 
account a 1 mm offset. The initial blank size is 400 mm x 400 mm with an initial thickness of 
1 mm. From a symmetrical point of view, only a quarter of the product is simulated. To 
demonstrate the performance of the refinement procedure an initial coarse mesh is chosen, i.e. 
a quarter of the blank is meshed with 800 membrane elements with an initial element size of 
10 mm. Remeshing will be performed when the thickness error or the geometrical error 
exceeds 6%. 

After 31 displacement increments of 0.5 mm in the negative z-direction, the error indicator 
algorithm detects elements which have a geometrical error larger than 6%, see Figure 5-8. 
These elements are situated at the die shoulder and the die corner. In this figure the thickness 
error is also shown, however, its maximum value does not yet exceed 6%. Subsequently, the 
elements with an error greater than 6% will be processed by the refinement procedure. 
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Figure 5-8. Geometrical error distribution (left) and thickness error distribution (right) 

To divide an old element into new elements, the newly created nodes will be positioned 
exactly between two existing nodes. For an old element making contact with a radius of the 
tool geometry this means that the new node penetrates the tool significantly, which gives rise 
to unrealistic high contact pressure, see Figure 5-9. Subsequently, the contact algorithm based 
on a penalty method will force the node towards the tool surface in order to reduce the contact 
pressure.  

 
Figure 5-9. Penetration of the tool by a new node 

Figure 5-10 depicts the refined mesh in step 32. Due to the refinement the sheet is able to 
follow the die shoulder geometry more accurately, which leads to more accurate simulation 
results. Again the geometrical error is shown, from which it can be seen that the error in the 
refined area (die shoulder and die corner) has decreased significantly to a value of 
approximately 0.03. 

 
Figure 5-10. Refined mesh and geometrical error distribution in refined mesh 

 The final product shape is shown in Figure 5-11. The mesh contains 3342 elements, where 
a large number of elements is generated to describe wrinkling which appears in the die corner. 
Since these wrinkles do not occur in a simulation with a uniform coarse or fine mesh, they are 
a result of the refinement procedure. This can be explained with the help of the right-hand 
picture in Figure 5-11. A cleft element (containing line b) is surrounded by two refined 
elements (containing lines a and c). Lines a and c follow the tool geometry more accurately 
than line b which introduces some imperfection in the blank and subsequently spurious 
wrinkling may occur. To avoid this spurious wrinkling due to mesh refinement it is necessary 
to start the simulation with a mesh that is not too coarse. 
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Figure 5-11. Final product shape 

 The high degree of refinement which is seen at both flat sides of the product can be 
explained with the help of Figure 5-12. When the angle α between two elements becomes too 
large, these elements will be refined. The refined elements flow over the tool radius until the 
surrounding cleft elements also reach the tool radius. Again, the angle between the already 
refined element and the cleft element becomes too large and the second refinement step is 
performed which includes a further refinement of some of the already refined elements.   

 
Figure 5-12. Refinement in curved tool area 

To finish the analysis of this simulation, the plastic thickness strain distribution of the 
product simulated with a refined mesh (3342 elements), a coarse mesh (800 elements) and a 
fine mesh (3200 elements) are compared in Figure 5-13. It can be concluded that, despite the 
spurious wrinkling, the simulation with the refined mesh gives a more accurate description of 
the plastic thickness strain than the simulation with the coarse mesh. The CPU-time for the 
simulation with the refined mesh was 2725 sec on a HP8000 workstation, for the simulation 
with the coarse mesh 720 sec, and for the fine mesh 2717 sec. The error indicator needed 
0.5%, and the refinement procedure 50%, of the computation time for one iteration. 

 
Figure 5-13. Plastic thickness strain distribution 
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The refinement procedure in the former simulation was mainly controlled by the 
geometrical error indicator. In order to demonstrate the performance of the thickness error 
indicator the same simulation will be performed, but with a much higher blankholder force to 
introduce necking in the side wall of the product (the geometrical error is nearly zero in that 
part). The refined mesh and the thickness error distribution after 40 mm deep drawing are 
depicted in Figure 5-14. It can clearly be seen that refinement takes place in the area where 
necking occurs. 

 
Figure 5-14. Finite element mesh and thickness error distribution 

Finally the plastic thickness strain distribution in the simulation using the refined mesh is 
compared with the plastic thickness strain distribution in the simulation using a fine mesh 
(5000 elements), see Figure 5-15. The plastic thickness strain in the simulation with the 
refined mesh is much higher and the area where necking takes place is much smaller. Even 
without experimental verification it can be concluded that the simulation with the refined 
mesh gives a more realistic prediction of the necking process.  

 
Figure 5-15. Plastic thickness strain distribution for refined mesh (left) and fine mesh (right) 

 
5.5.2 Square product simulation: Kirchhoff elements 
 

In this section the developed refinement procedure will be applied in the deep drawing of a 
square product, using plate elements based on Kirchhoff theory with 2 integration points 
across the thickness. The dimensions of the sheet material and the tools are identical to the 
square product simulation, using membrane elements. Since an initial coarse mesh can give 
rise to spurious wrinkling initiated by the refinement procedure (see former section), the 
blank is meshed with 2048 elements for this simulation. After a punch stroke of 75 mm, the 
plastic thickness strain of the simulation with the refined mesh is compared with the plastic 
thickness strain of a simulation with a fine mesh (8712 elements with an element side length 
of 3 mm), Figure 5-16.  

The CPU-time needed for the fine mesh was 29915 sec, the refined mesh needed 10067 sec 
and ends up with 4038 elements. Some differences between these two simulation results can 
be observed. The maximum negative plastic thickness strain amounts -0.227 for the fine mesh 
and -0.252 for the refined mesh. The deviation between these values can be explained with 
the help of Figure 5-17. In this picture a part of a tool geometry (dashed line) is depicted and 
consists of two flat parts and a curved part. Assuming that elements a to c will be refined, 
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then the contact algorithm will place the new nodes (gray colored) on the tool surface. This 
means that hardly any deformation will occur in the new elements created out of elements a 
and c. However, significant deformation will occur in the new elements created out of 
element b, which will be more than proportional. For the simulation with the initial fine mesh 
the deformation due to bending along the tool surface will be smoother, which explains the 
difference in the maximum negative plastic thickness strain. 

Also, a higher negative plastic thickness strain in the side walls of the product can be 
observed for the simulation with the refined mesh. This is caused by the coarse elements 
which flow initially along the die and punch shoulder, just before these elements are refined. 
These parts of the blank, situated at the die and punch shoulder and meshed with these coarse 
elements will behave in a stiffer manner which results in more thickness strain in the side 
walls of the product between the die and punch shoulder.   

 
Figure 5-16. Plastic thickness strain distribution for refined mesh (left) and fine mesh (right) 

 
Figure 5-17. Refinement in curved tool area 

Another simulation is performed with a much higher blankholder force to introduce 
necking in the side wall of the product, in order to show the performance of the mapping 
procedure used, see Section 5.4. The plastic thickness strain distribution for both the 
simulation with the refined mesh and the fine mesh after 85 mm deep drawing are depicted in 
Figure 5-18. 

In contrast to the simulation results obtained with membrane elements, see Figure 5-15, the 
negative plastic thickness strain is lower for the simulation with the refined mesh whereas the 
necking area is almost identical for both simulations. The reason for the deviation in plastic 
thickness strain is due to the mapping procedure. The integration point data of the new 
elements will be determined using the average nodal value of the old nodes, based on the 
integration point data of all elements connected to the old node. This can give rise to data 
smoothing, especially when high gradients of the state variables are involved which is the 
case when necking occurs. The simulation with membrane elements gives a more realistic 
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prediction of the necking process, since no smoothing is applied in the mapping procedure for 
membrane elements. Hence, it is recommended to use a similar mapping procedure for plate 
elements as for membrane elements in order to avoid smoothing. 

 
Figure 5-18. Plastic thickness strain distribution for refined mesh (left) and fine mesh (right) 

 
5.5.3 Simulation of a fender 
 

The final test to demonstrate the performance of the refinement procedure is the simulation 
of a fender. The sheet material used was a rectangle of 810 x 680 mm with an initial thickness 
of 1.2 mm and was made from aluminum. The sheet was coarse meshed with 11016 
membrane elements. The final product depth was 118 mm. The simulation was run with and 
without the refinement option. The refinement procedure was restricted to one refine-level to 
avoid an enormous increase in the number of elements and subsequently CPU-time. The 
generation of new elements during the forming operation is graphically represented in Figure 
5-19.  
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Figure 5-19. Element generation during simulation with refinement 

Most of the new elements were created at the final stage of the forming process which has 
a positive effect on the CPU-time: the CPU-time for the simulation with refinement was 
47706 sec on a HP8000 workstation. The CPU-time for the simulation without refinement 
was 26010 sec. When the same simulation was performed with an initially finer mesh which 
contained elements that were twice as small as the initially coarse mesh, the CPU-time 
increased by at least a factor 4. Hence it can be concluded that the refinement procedure can 
successfully be applied from a CPU-time point of view. 
 Figure 5-20 depicts the finite element meshes for computations with and without the 
refinement procedure. The refinement took place, as expected, at the highly curved regions in 
the tool description. 
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Figure 5-20. Finite element distribution for uniform mesh (upper) and refined mesh (lower) 

Finally, the plastic thickness strain distribution is compared for the two simulations, see 
Figure 5-21. The maximum negative plastic thickness strain is higher for the refined mesh 
(about 4%) which was expected since the uniform mesh consists of coarse elements. Also, the 
overall product is more stretched when the refined mesh is used as a result of a better 
description of the tool geometry.  
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Figure 5-21. Plastic thickness strain distribution for uniform mesh (upper) and refined mesh 
(lower) 
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5.6 Prediction of wrinkling in combination with mesh refinement: a preliminary study 
 
 Surface distortions such as localized buckling and wrinkling are often observed in sheet 
metals during deep drawing. Because of the trend in industry towards the usage of thinner, 
high strength sheet materials, wrinkling is becoming one of the most troublesome failure 
modes in sheet metal forming. As a consequence, it is desired that a finite element simulation 
must be able to predict whether a sheet will wrinkle during forming or not. Generally, the 
dimensions of wrinkles are small compared to the dimensions of the product. As a result very 
small elements have to be used in a simulation to be able to spot possible wrinkling in the 
sheet material during forming, leading to an excessive increase of computational cost. Hence, 
it is desired to incorporate a predictive model for the initiation of wrinkling in a finite element 
code. When coupling this predictive model to a mesh refinement procedure, a simulation can 
be started with a relatively coarse mesh and refinement of the mesh will take place in the 
areas with a high wrinkling risk. In this way, wrinkles can be accurately modeled while 
avoiding superfluous computational cost. A model for the analysis of local wrinkling has been 
proposed by Hutchinson and Neale [Hutchinson, 1974], [Hutchinson, 1985]. It consists of 
formulating the problem within the context of plastic bifurcation theory for thin shell 
elements. Simplifications arise by exploiting the fact that the short wavelength modes are 
shallow and can be analyzed using Donnell-Mushtari-Vlasov (DMV) shallow shell theory. 
This theory restricts the analysis to buckling modes having a characteristic wavelength that is 
large compared to the sheet thickness but small compared to the local radii of curvatures. 
 The above mentioned analytical model is being implemented in the finite element code 
DiekA. For a detailed description concerning the analytical model, simplifications and 
implementation, the reader is referred to [Selman, 1999b], [Brunet, 1997]. Briefly, a critical 
wrinkling stress is calculated, which is influenced by the geometry of the sheet (local 
curvatures), sheet thickness, material properties and the current stress state. A wrinkling risk 
factor fσ is defined, using the critical wrinkling stress σi

cr and the current principal stress σi:    

f i ori

i
crσ

σ
σ

=








 = 1 2 (depending on the wrinkling direction)  

(5-
229)

A wrinkling risk exists whenever the wrinkling risk factor is larger than 1. For each element, 
this wrinkling risk factor is calculated and as it exceeds the value of 1, the element will be 
processed by the refinement procedure.  
 The performance of the wrinkling prediction model in combination with mesh refinement 
was demonstrated by a deep drawing simulation of a hemispherical product. The punch had a 
radius of 146.5 mm, the die shoulder radius was 30 mm. The sheet thickness was 1 mm and 
the product depth was 100 mm. Three simulations were performed. The first simulation was 
performed without the refinement procedure and the blank was coarse meshed (2042 
elements). The second simulation was also performed without the refinement procedure, 
however in this case the blank was fine meshed (8118 elements). The third simulation made 
use of the refinement procedure, starting with a coarse mesh (2042 elements) and ended up 
with a locally refined mesh (10808 elements). The deformed meshes for the three simulations 
after 100 mm deep drawing are given in Figure 5-22. The refined mesh clearly shows the 
areas where wrinkling takes place. To visualize the appearance of wrinkles in the three 
simulations, the curvatures in the direction of the principal axes are presented in Figure 5-23 
and Figure 5-24. The simulation with the coarse mesh hardly shows any wrinkles whereas the 
simulation with the fine and refined meshes shows significant wrinkling in and below the die 
shoulder area. Note that the gray-colored areas in the pictures indicate a curvature higher than 
0.1.   
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Figure 5-22. Deformed meshes (A: coarse ; B: fine ; C: refined) 

 
Figure 5-23. Curvature in the first principal direction (A: coarse mesh ; B: fine mesh ; C: 
refined mesh) 

 
Figure 5-24. Curvature in the second principal direction (A: coarse mesh ; B: fine mesh ; C: 
refined mesh) 

Finally, Figure 5-25 shows the wrinkling risk factor after 40 mm deep drawing for the 
simulation in which the refinement procedure was used. An element is processed by the 
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refinement procedure when the wrinkling risk factor is higher than 1. This figure clearly 
shows the risk of wrinkling in and below the die shoulder area. Figure 5-26 shows the 
wrinkling risk factor in the final product for the three simulations. The figure shows that the 
simulations with the coarse and refined mesh still show a high potential for wrinkling, from 
which it can be concluded that the mesh is still too coarse to describe the wrinkling behavior 
accurately. The simulation with the refined mesh shows a much lower potential for wrinkling, 
which indicates a more accurate description of the wrinkling behavior (note that the wrinkling 
risk factor decreases when wrinkles actually occur due to the relaxation of the stress state and 
change in curvature). Since for this example the refinement procedure was restricted to 2 
refine-levels, it still shows some slight potential for wrinkling.  

From this preliminary study, it can be concluded that the coupling of the wrinkling 
prediction model to the refinement procedure can be very powerful to accurately describe the 
wrinkling behavior, thereby avoiding a uniform mesh with very small elements all over the 
product and thus also superfluous computational costs. 

 
Figure 5-25. Wrinkling risk factor in simulation with mesh refinement after 40 mm deep 
drawing 

 
Figure 5-26. Wrinkling risk factor in the final product (A: coarse mesh ; B: fine mesh ; C: 
refined mesh) 

 
 
5.7 Concluding remarks 
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A refinement procedure as implemented in the in-house finite element code DiekA is 
described in this chapter. Refinement of an element is performed when a user-defined error is 
exceeded. This error is calculated with two error indicators, an error indicator based on the 
thickness error and an error indicator based on a geometrical error. The performance of these 
indicators is demonstrated with three deep drawing applications.  

The mesh generation procedure itself is of the h-adaptivity type. A new node is placed 
exactly between two old nodes of an element which is to be refined, i.e. an inefficient 
element. As the new node belongs to an inefficient element making contact with a tool radius, 
significant penetration of this node into the tool geometry will occur which gives rise to 
unrealistically high contact pressure. A contact algorithm based on a penalty method will then 
force the new node to the tool surface to reduce this contact pressure. In Section 5.5.2 it is 
shown that this approach can give rise to an overestimate of the strain state. An option to 
avoid this overestimate is to place the new node directly on the tool surface, using a closest 
point projection. Applying this option however has the disadvantage that material is 
generated, i.e. the total element length of the newly created elements will be greater than the 
original element without additional straining of the new elements. 

Two data map strategies are discussed in Section 5.4. The first one makes use of nodal 
values which are based on the data of one element, the second one uses nodal values which 
are based on all the elements connected to that node. The square product simulations with 
plate elements based on Kirchhoff theory proved that the latter strategy can give rise to 
significant smoothing, affecting the credibility of the simulation results. 

The refinement procedure can successfully be applied in simulations of the deep drawing 
process, significantly decreasing the required CPU-time for an accurate simulation. However, 
it is highly recommended not to start a simulation with a too coarse mesh, as this can give rise 
to spurious wrinkling and superfluous element generation.  

Finally, a preliminary study is presented in this chapter in which the refinement procedure 
is coupled to a wrinkling prediction model. The results of this study show that this coupling 
can be a powerful tool to simulate wrinkling behavior during the forming process without an 
excessive increase in computational time. 
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6.  Conclusions and recommendations 
 
 
 

The finite element method is used worldwide to simulate the deep drawing process. 
However, one of the limitations of a finite element simulation is still the high computational 
time for complex deep drawing parts. The objective of this work is to decrease the 
computational time while maintaining the robustness and accuracy. This thesis presents the 
development of a mixed elastoplastic / rigid plastic material model, an equivalent drawbead 
model and an adaptive remeshing procedure for sheet metal forming. 
 

The objective of the mixed elastoplastic / rigid plastic material model is to benefit from the 
advantages of both the elastoplastic and rigid plastic material model, i.e. accuracy and fast 
convergence over a large range of plastic strain increments. A stiffness tensor was derived 
that is consistent with the applied stress update algorithm. When applying the consistent 
stiffness tensor, the mixed material model shows quadratic convergence in academic 
problems. However, in a deep drawing simulation, the mixed material model yields a non-
converging process due to appearance of 3-dimensional deformation patterns. Therefore, 
instead of the consistent approach, the direct approach of the mixed material model is used in 
deep drawing simulations. The direct approach of the mixed material model behaves more 
robustly than the elastoplastic material model but it needs more iterations per step to 
converge. As a consequence, a simulation with large incremental steps using the mixed 
material model will be as fast as a simulation with smaller incremental steps using the 
elastoplastic material model.  

Since a simulation becomes more accurate at smaller incremental steps, generally it is 
recommended to use the elastoplastic material model instead of the mixed material model. 
Only for critical product simulations which can be run overnight, is the mixed material model 
to be favored to increase the chance of a converging simulation.  

The developed mixed material model did not satisfy the expectations. However, the 
objective to develop a fast and accurate anisotropic material algorithm, based on the 
improvements found for the isotropic Von Mises material model, is still interesting and 
research is this field is recommended.   
 

A mechanism to control the material flow locally is provided by drawbeads. An equivalent 
drawbead model was developed in which the real drawbead geometry is replaced by a line on 
the tool surface. A discrete material element passing this line will experience a time 
dependent drawbead restraining force (DBRF) and a time dependent thickness strain. 
Simultaneously, a drawbead lift force is subtracted from the total blankholder force. The 
DBRF is implemented in the equivalent drawbead model as an extra body force. Two 
different algorithms have been developed to take into account the plastic thickness strain. One 
algorithm is based on a stress estimate and one algorithm is based on a penalty constraint 
method. The strain algorithm based on the penalty constraint method is preferred to the 
algorithm based on the stress estimate because of its better convergence behavior. 
Experiments were performed to validate the simulation results. The good agreement between 
the experimental data and the simulation results shows that the equivalent drawbead model is 
a powerful tool to replace the real drawbead in deep drawing simulations without significant 
loss of accuracy. 
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The equivalent drawbead model is based on a plane strain assumption and as a result it is 
not able to take into account the complex deformation behavior of the material in the vicinity 
of the drawbead ends. When the deformation patterns at the drawbead ends become 
important, it is necessary to model the real drawbead geometry instead of using the equivalent 
drawbead model. 
 

The objective of adaptive remeshing is to decrease the computational time while 
maintaining the desired accuracy. The adaptive remeshing procedure can be divided into three 
phases. First, a remeshing criterion is defined based on an error indicator. Two error 
indicators are presented in this thesis, i.e. an error indicator based on a thickness error and an 
error indicator based on a geometrical error. Next, a new mesh has to be generated which 
must satisfy specific requirements. A refinement strategy based on h-adaptivity is developed 
for 3-node triangular plate elements. Finally, a procedure for the transfer of state variables 
and boundary conditions from the old mesh to the new mesh is required. Two transfer 
procedures are implemented. The first procedure uses the nodal values of the old nodes, based 
on the integration point data of one element. The second procedure uses the averaged nodal 
values of the old nodes, based on the integration point data of the all the elements connected 
to the old node. It is recommended to use the first data transfer procedure since the latter 
transfer procedure leads to inadmissible smoothing. The refinement strategy can lead to an 
overestimate of the strain or to spurious material generation. Besides, it can lead to spurious 
wrinkling and superfluous element generation when the refinement strategy is not carefully 
applied. When correctly used, the adaptive remeshing procedure can successfully be applied 
to simulations of the real-life deep drawing process, reducing the required computational time 
for an accurate simulation significantly. 

A preliminary study was carried out of the coupling of a wrinkling prediction model to the 
adaptive remeshing procedure. The results of this study show that this coupling can be a very 
powerful tool for accurately describing wrinkling behavior, while avoiding an excessive 
increase in computational cost. 

The performance of the refinement procedure strongly depends on the user-defined 
admissible error. It is recommended to investigate the influence of the admissible error on the 
overestimate of the strain and generation of spurious wrinkling, spurious material and 
superfluous elements. 
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List of symbols 
 
 
 
Scalars 
 
A          area 
B          width 
C          Nadai parameter 
E          elasticity modulus 
f          function to be convected, 

hardening parameter 
fσ          wrinkling risk factor 
F          force 
F, G, H, L, M, N     anisotropy parameters 
g          determinant of the metric tensor 
G          shear modulus 
h          hardening modulus 
H          height 
J          Jacobian 
l          length 
L          extrapolation function 
M          moment 
n          hardening exponent 
N          interpolation function 
R          anisotropy parameter,  

radius 
s          length, 

coordinate distance 
S          surface 
t          time,  

thickness 
T          end time 
v          relative velocity 
V          volume 
w          projected element side length on drawbead line,  

weight function  
W          work 
β          scalar 
ε          true strain 
φ          yield function 
γ          scalar 
η, ξ         natural coordinates 
κ          equivalent plastic strain,  

parameter in finite volume scheme 
λ          constant of Lamé 
&λ          plastic multiplier  
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µ          friction coefficient 
ν          Poisson’s ratio 
πt         thickness error 
πg         geometric error 
θ          angle, 

arbitrary scalar  
θ          arbitrary scalar 
ρ          mass density 
σ          true stress 
ξ          scalar which depends on the anisotropy parameters 
ψ          scalar 
 
 
Vectors 
 
b          base vector 
e          base vector 
f, F         force vector 
fc          force vector related to the penalty constraint method 
g          arbitrary vector,  

base vector 
n          normal vector 
P          force vector 
r, R         residual force vector 
t          surface traction 
u          displacement 
$u           exact solution of u 

v          velocity 
x          spatial position 
X          reference position 
ξ           independent field variable 
 
 
Second order tensors 
 
B          left Cauchy-Green tensor 
C          right Cauchy-Green tensor 
D          rate of deformation 
e          Eulerian strain tensor 
E          Lagrangian strain tensor 
F          deformation gradient 
g          metric tensor 
G          deformation tensor 
I          second order unit tensor 
K          tangent stiffness matrix 
Kc         stiffness matrix related to the penalty constraint method 
L          spatial velocity gradient 
Q          rotation tensor 
R          rotation tensor 
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R*         rotation tensor 
S          2nd Piola-Kirchhoff stress tensor, 

Green-Lagrange like tensor  
U          right stretch tensor,  

tensor to simplify the expression for the stress state 
V          left stretch tensor 
W          spin tensor 
β           hardening tensor 
δ          Kronecker delta 
ε          linear strain tensor 
σ          Cauchy stress tensor 
$σ 0         mapped initial stress 
~σ 0         mapped initial stress 

 
 
Third order tensors 
 
B          tensor relating D to v 
Bt          tensor relating D to v 
 
 
Fourth order tensors 
 
A          tensor to simplify the expression for the stress state 
E          elasticity tensor 
H          fourth order unit tensor 
Ly          material tensor related to plasticity 
P          tensor containing the anisotropy parameters 
T          permutation tensor 
Y          yield tensor 
Z          tensor to simplify the expression for the stress state 
α          interpolation tensor 
ψ          derivative of tensor α with respect to κ 
 
 
 
Operators 

αo          Jaumann time derivative of tensor α 
&α          material time derivative of tensor α 

α-1         inverse of tensor α 
αT         transpose of tensor α 
α-T         inverse transpose of tensor α 
ϕ(·)         mapping function 
∆          increment 
v
∇ ·         pre-gradient operator 
·
w
∇          post-gradient operator 
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⋅
−          average value 
 
 
Subscripts 
 
0          initial 
0, 45, 90       angle to rolling direction 
1          end of time increment 
db         drawbead 
dbrf         drawbead restraining force 
e          element 
ext         external 
gp         Gauss point 
i          counter representing an element side 
i, j         covariant components 
int         internal 
k          concerning iteration k 
n          node 
pr_thick       prescribed thickness strain 
ps          plane strain 
ref         reference 
t          concerning the mechanical boundary conditions,  

trial 
u          concerning the kinematic boundary conditions 
x, y, z        axis 
y          yield 
 
 
Superscripts 
 
e          elastic 
cr          critical 
i, j         contravariant components 
init         initial 
n          concerning increment n, 

concerning iteration n   
p          plastic 
α          node  
β          node 
*          invariant 
 
 
Abbreviations 
 
CAD        computer aided design 
DBRF        drawbead restraining force 
 
 
Others 
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B          reference domain 
S          spatial domain 
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Samenvatting 
 

‘Ontwikkelingen in numerieke simulaties van het industriële dieptrekproces’ 
 
Het dieptrekproces wordt toegepast om produkten met soms complexe vormen en 

krommingen te vervaardigen uit plaatmetaal. Het proces begint met het klemmen van de 
buitenrand van de plaat tussen een plooihouder en een matrijs. De plooihouder dient ter 
voorkoming van plooivorming en om de materiaalstroom tijdens het dieptrekproces te 
controleren. Vervolgens wordt een stempel omlaag bewogen, waarbij de specifieke vorm van 
het gereedschap in de plaat wordt gedrukt. De uiteindelijke vorm van het produkt wordt 
bepaald door het gereedschap, de plaat zelf en procesparameters zoals plooihouderkracht en 
smeermiddel. Zonder uitgebreide kennis omtrent de invloed van al deze variabelen op het 
dieptrekproces is het bijna niet mogelijk om een produkt te vervaardigen met de gewenste 
vorm en eigenschappen. Een belangrijk gereedschap om de invloed van deze variabelen op 
het vervormingsproces te bestuderen is de eindige elementen methode. Voor een nauwkeurige 
simulatie van het industriële dieptrekproces is een nauwkeurige numerieke beschrijving 
vereist van het gereedschap, materiaalgedrag, contactgedrag en andere procesvariabelen. 
Echter, vandaag de dag voldoen de nauwkeurigheid en betrouwbaarheid van een numerieke 
simulatie nog niet aan de industriële eisen. De beperkingen in een numerieke simulatie zijn 
nog steeds de hoge rekentijden voor complexe dieptrekprodukten en het gebrek aan 
gedetailleerde kennis omtrent materiaal- en contactgedrag. Het doel van het onderzoek 
beschreven in dit proefschrift is toegespitst op het reduceren van de rekentijd van een eindige 
elementen simulatie zonder verlies van robuustheid en nauwkeurigheid. Dit proefschrift 
beschrijft de ontwikkeling van een gemengd elastoplastisch / starplastisch materiaalmodel, 
een equivalent trekrilmodel en een elementennet aanpassingsprocedure voor plaatvervorming. 
 

Twee veel gebruikte materiaalmodellen in numerieke plaatvervormingssimulaties zijn het 
elastoplastisch materiaalmodel en het starplastisch materiaalmodel. Het elastoplastisch 
materiaalmodel heeft als voordeel dat het materiaalgedrag nauwkeurig wordt beschreven. Een 
nadeel van dit elastoplastisch materiaalmodel is dat het kan leiden tot numerieke instabiliteit 
ten gevolg van de overgang van elastisch naar plastisch gedrag. Het starplastisch 
materiaalmodel heeft als voordeel dat het een snel en robuust algoritme is. Nadelen van het 
starplastisch materiaalmodel zijn dat elastisch gedrag zoals terugvering niet beschreven kan 
worden en dat het model onnauwkeurig wordt in delen van de plaat waar geen plastische 
vervorming optreedt. Een gemengd elastoplastisch / starplastisch materiaalmodel is 
ontwikkeld om de voordelen van beide materiaalmodellen te combineren, te weten 
nauwkeurigheid en snelle convergentie voor zowel kleine als grote plastische rekincrementen. 
Het gemengde materiaalmodel bestaat uit twee delen. Het gemengde materiaalmodel 
degenereert tot het Euler Forward elastoplastisch materiaalmodel voor kleine rekincrementen. 
Voor grote rekincrementen degenereert het gemende materiaalmodel tot het starplastisch 
materiaalmodel. De prestaties van het gemengde materiaalmodel zijn getoetst aan de hand van 
academische problemen en een praktisch probleem. Het gemengde materiaalmodel presteert 
goed in het geval van de academische problemen, maar werkt niet goed in het geval van het 
praktische probleem. 

 
De kwaliteit van een diepgetrokken onderdeel wordt bepaald door de materiaalstroom 

tijdens het dieptrekken. Deze materiaalstroom kan lokaal worden beïnvloed door trekrillen. 
Trekrillen zijn kleine uitstulpingen die in de plooihouder of matrijs geplaatst worden. Een 
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trekril bestaat uit twee onderdelen, de ril zelf en een bijpassende geul. De trekril veroorzaakt 
een weerstandskracht ten gevolge van een cyclisch buig- en terugbuigproces wanneer 
materiaal door de trekril wordt getrokken, waarbij de rektoestand in het materiaal verandert. 
Een equivalent trekrilmodel is ontwikkeld waarbij in een dieptreksimulatie de echte geometrie 
van een trekril wordt vervangen door een lijn op het gereedschapsoppervlak die de 
belangrijkste trekrileigenschappen bevat. De invoer van het equivalente trekrilmodel wordt 
verschaft door experimenten of door een 2D trekrilmodel (gebaseerd op de vlakke 
vervormingstoestand) waarin de echte geometrie van de trekril is gemodelleerd. 
Experimenten zijn uitgevoerd om het equivalente trekrilmodel te valideren. De goede 
overeenkomst tussen de experimenten en de simulaties laat zien dat het equivalente 
trekrilmodel een krachtig gereedschap is om de echte trekrilgeometrie in een simulatie te 
vervangen zonder een aanzienlijk verlies van nauwkeurigheid. 

 
De numerieke simulatie van industriële dieptrekprocessen is in aanleg zeer kostbaar. 

Daarom is het gewenst om de rekenkosten van een simulatie te minimaliseren zonder verlies 
van de nauwkeurigheid. Dit doel kan bereikt worden door het aanpassen van het elementennet 
tijdens de simulatie. Aanpassen van een elementennet tijdens een simulatie heeft twee 
voordelen. Ten eerste kan de rekentijd beperkt worden en ten tweede kan een misvormd 
elementennet worden voorkomen. De aanpassing van het elementennet wordt uitgevoerd in 
drie fasen. Ten eerste wordt een criterium gedefinieerd gebaseerd op een foutafschatter die 
bepaalt welk deel van het elementennet aangepast moet worden. Vervolgens wordt een nieuw 
elementennet geconstrueerd dat voldoet aan gestelde eisen. Tot slot moet de data worden 
overgezet van het oude elementennet naar het nieuwe elementennet. In dit proefschrift 
worden twee foutafschatters gepresenteerd: een foutafschatter gebaseerd op een fout in de 
dikteverdeling en een foutafschatter gebaseerd op een fout in de geometriebeschrijving. Een 
verfijningsstrategie is ontwikkeld voor 3-knoops driehoekige plaatelementen, gebaseerd op 
een aanpassingsstrategie van het type h. Twee transformatie-algoritmes zijn geïmplementeerd 
om de data van het oude naar het nieuwe elementennet over te zetten. De werking van de 
elementennet aanpassingsprocedure is gedemonstreerd aan de hand van een aantal 
dieptreksimulaties. De resultaten van deze simulaties tonen aan dat de elementennet 
aanpassingsprocedure succesvol kan worden toegepast in de simulatie van  industriële 
dieptrekprocessen, waarbij de rekentijd voor een nauwkeurige simulatie drastisch wordt 
verlaagd. Tevens is een prille studie uitgevoerd naar de koppeling van een model dat 
plooivorming kan voorspellen en de elementennet aanpassingsprocedure. De resultaten van 
deze studie laten zien dat deze koppeling zeer krachtig kan zijn om nauwkeurig plooivorming 
te beschrijven, waarbij een overbodige toename van de rekentijd kan worden voorkomen. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


